论文标题

解开参数空间:行星多样性在触发白矮人周围行星系统上的动态不稳定性中的作用

Disentangling the parameter space: The role of planet multiplicity in triggering dynamical instabilities on planetary systems around white dwarfs

论文作者

Maldonado, R. F., Villaver, E., Mustill, A. J., Chávez, M.

论文摘要

绕中间和低质量恒星的行星陷入困境,因为它们的恒星宿主进化为白矮人(WDS),因为行星系统的动力学因行星的增加而变化:恒星质量损失后的恒星质量比。为了了解行星多样性如何影响后序列序列(MS)系统的动态稳定性,我们执行数千个涉及行星多样性作为变量的N体模拟,并且具有受控的物理和轨道参数空间:相等的质量行星;相邻行星对之间相同的轨道间距;和具有少量偏心和倾向的轨道。在系统动力学10 GYR之后,我们将宿主星从MS转化为WD阶段。我们发现,在WD阶段的两行型系统的动态活动模拟的比例为$ 10.2^{+1.2} _ { - 1.0} $ - $ 25.2^{+2.5} _ { - 2.2} $ $ \%$,并增加到$ 33.6^{+2.3} _ { - 2.2} $ - $ 74.1^{+3.7} _ { - 4.6} $ $ \%$用于六个式系统,其中范围涵盖了不同的初始Orbital分离范围。我们的模拟表明,无论行星质量和分离范围如何,当恒星变成WD时,系统就越不稳定。其他结果证明,具有低质量行星(1,10 $ \ mathrm {m_ \ oplus} $)的模拟最多损失,而没有行星损失的轨道越过的系统很大一部分,并且在WD的冷却轨道上的GYR Time Scace具有动态活跃。另一方面,具有高质量行星的系统(100,1000 $ \ mathrm {m_ \ oplus} $)损失了多达五个行星,最好是弹出,并且在WD形成后的前几百Myr中变得不稳定。

Planets orbiting intermediate and low-mass stars are in jeopardy as their stellar hosts evolve to white dwarfs (WDs) because the dynamics of the planetary system changes due to the increase of the planet:star mass ratio after stellar mass-loss. In order to understand how the planet multiplicity affects the dynamical stability of post-main sequence (MS) systems, we perform thousands of N-body simulations involving planetary multiplicity as the variable and with a controlled physical and orbital parameter space: equal-mass planets; the same orbital spacing between adjacent planet's pairs; and orbits with small eccentricities and inclinations. We evolve the host star from the MS to the WD phase following the system dynamics for 10 Gyr. We find that the fraction of dynamically active simulations on the WD phase for two-planet systems is $10.2^{+1.2}_{-1.0}$-$25.2^{+2.5}_{-2.2}$ $\%$ and increases to $33.6^{+2.3}_{-2.2}$-$74.1^{+3.7}_{-4.6}$ $\%$ for the six-planet systems, where the ranges cover different ranges of initial orbital separations. Our simulations show that the more planets the system has, the more systems become unstable when the star becomes a WD, regardless of the planet masses and range of separations. Additional results evince that simulations with low-mass planets (1, 10 $\mathrm{M_\oplus}$) lose at most two planets, have a large fraction of systems undergoing orbit crossing without planet losses, and are dynamically active for Gyr time-scales on the WD's cooling track. On the other hand, systems with high-mass planets (100, 1000 $\mathrm{M_\oplus}$) lose up to five planets, preferably by ejections, and become unstable in the first few hundred Myr after the formation of the WD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源