论文标题
草皮:两因素,通用,健壮,快速分发学习算法
TURF: A Two-factor, Universal, Robust, Fast Distribution Learning Algorithm
论文作者
论文摘要
来自样品的近似分布是一个规范的统计学习问题。其最强大和最成功的方式之一将每个分布近似于$ \ ell_1 $距离,从本质上讲,最多比其最接近的$ t $ piece-piece-$ d $ d $ polyenmial,其中$ t \ ge1 $和$ d \ ge0 $。让$ c_ {t,d} $表示最小的因素,显然$ c_ {1,0} = 1 $,可以证明所有其他$ t $和$ t $和$ d $ $ c_ {t,d} \ ge 2 $。然而,当前的计算有效算法仅显示$ c_ {t,1} \ le 2.25 $,并且限制迅速上升至$ c_ {t,d} \ le 3 $ 3 $ for $ d \ ge 9 $。我们得出了一个接近线性的时间且本质上是最佳估计器,该估计器为所有$(t,d)\ ne(1,0)$建立$ c_ {t,d} = 2 $。此外,对于许多实际分布,最低的近似距离是通过零件数量大大变化的多项式来实现的。我们提供了一种几乎很理想地估算此数字的方法,因此有助于实现最佳近似值。结合两种技术的实验证实了与现有方法相比的性能改善。
Approximating distributions from their samples is a canonical statistical-learning problem. One of its most powerful and successful modalities approximates every distribution to an $\ell_1$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d$ polynomial, where $t\ge1$ and $d\ge0$. Letting $c_{t,d}$ denote the smallest such factor, clearly $c_{1,0}=1$, and it can be shown that $c_{t,d}\ge 2$ for all other $t$ and $d$. Yet current computationally efficient algorithms show only $c_{t,1}\le 2.25$ and the bound rises quickly to $c_{t,d}\le 3$ for $d\ge 9$. We derive a near-linear-time and essentially sample-optimal estimator that establishes $c_{t,d}=2$ for all $(t,d)\ne(1,0)$. Additionally, for many practical distributions, the lowest approximation distance is achieved by polynomials with vastly varying number of pieces. We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation. Experiments combining the two techniques confirm improved performance over existing methodologies.