论文标题
带有亚微米波长的高频旅行波语音腔
High-frequency traveling-wave phononic cavity with sub-micron wavelength
论文作者
论文摘要
稀薄的氮化岩(GAN)是一种经过验证的压电材料,是音调集成电路的有前途的平台,它具有可扩展信息处理器的巨大潜力。在这里,基于高声 - 索引 - 对比机制的无用的传播语音谐振器在gan-on-on-on-osphire中实现,其频率高达5 GHz,这与典型的超导二极管频率相匹配。当温度从室温($ Q = 5000 $)降低到$ 7 \,\ Mathrm {k} $($ q = 30000 $)时,发现质量因子的质量因子增加了6倍,因此获得了频率质量因子$ 1.5 \ times10^{14} $。当制造过程进一步优化时,可以使用更高质量的因素。我们的系统通过电路量子声学动力学在混合量子设备中显示出巨大的潜力。
Thin-film gallium nitride (GaN) as a proven piezoelectric material is a promising platform for the phononic integrated circuits, which hold great potential for scalable information processing processors. Here, an unsuspended traveling phononic resonator based on high-acoustic-index-contrast mechanism is realized in GaN-on-Sapphire with a frequency up to 5 GHz, which matches the typical superconducting qubit frequency. A sixfold increment in quality factor was found when temperature decreases from room temperature ($Q=5000$) to $7\,\mathrm{K}$ ($Q=30000$) and thus a frequency-quality factor product of $1.5\times10^{14}$ is obtained. Higher quality factors are available when the fabrication process is further optimized. Our system shows great potential in hybrid quantum devices via circuit quantum acoustodynamics.