论文标题

在与椭圆曲线相关的耦合kadomtsev- petviashvili系统上

On a coupled Kadomtsev--Petviashvili system associated with an elliptic curve

论文作者

Fu, Wei, Nijhoff, Frank W.

论文摘要

与椭圆曲线相关的耦合的kadomtsev- petviashvili系统,日期提出,Jimbo和Miwa [J.物理。 Soc。 JPn。,52:766--771,1983]在直接线性化框架中进行了重新研究,从一般线性积分方程的角度来看,这为我们提供了对该椭圆模型的整合性的更多见解。结果,我们成功地为椭圆耦合的kadomtsev--petviashvili系统构建了一个不仅由$ 2 \ times 2 $矩阵形式组成的lax对,而且还具有多索矩阵形式,而且还具有带有阶段的阶段,该解决方案由椭圆曲线上的点进行了参数。还讨论了基于直接线性化的尺寸减少,还讨论了椭圆耦合的korteweg-de Vries和Boussinesq系统。此外,对于$ d_ \ infty $ -Type kadomtsev--petviashvili方程,获得了具有非零恒定背景作为副产品的新型解决方案。

The coupled Kadomtsev--Petviashvili system associated with an elliptic curve, proposed by Date, Jimbo and Miwa [J. Phys. Soc. Jpn., 52:766--771, 1983], is reinvestigated within the direct linearisation framework, which provides us with more insights into the integrability of this elliptic model from the perspective of a general linear integral equation. As a result, we successfully construct for the elliptic coupled Kadomtsev--Petviashvili system not only a Lax pair composed of differential operators in $2\times2$ matrix form but also multi-soliton solutions with phases parametrised by points on the elliptic curve. Dimensional reductions based on the direct linearisation, to the elliptic coupled Korteweg-de Vries and Boussinesq systems, are also discussed. In addition, a novel class of solutions are obtained for the $D_\infty$-type Kadomtsev--Petviashvili equation with nonzero constant background as a byproduct.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源