论文标题
贝叶斯模仿学习端到端移动操作
Bayesian Imitation Learning for End-to-End Mobile Manipulation
论文作者
论文摘要
在这项工作中,我们调查并证明了贝叶斯方法从多个传感器输入中学习的贝叶斯方法的好处,这些方法适用于使用移动操纵器开设办公室门的任务。使用其他传感器输入(例如RGB + DEPTH摄像机)增强策略是提高机器人感知能力的一种简单方法,尤其是对于可能在不同情况下可能有利于不同传感器的任务。随着我们将多传感器的机器人学习扩展到非结构化的现实环境(例如办公室,房屋)和更复杂的机器人行为时,我们还增加了对模拟器的成本,效率和安全性的依赖。因此,跨多个传感器模式的SIM到实现差距也增加了,从而使模拟验证更加困难。我们表明,使用变异信息瓶颈(Alemi等,2016)来正规化卷积神经网络,以改善对固定域的概括,并以传感器 - 敏锐的方式减少SIM到现实的间隙。作为副作用,学习的嵌入还为每个传感器提供了模型不确定性的有用估计。我们证明我们的方法能够帮助缩小基于对每个传感器的情境不确定性的理解,成功地融合了RGB和深度模式。在现实的办公环境中,我们取得了96%的任务成功,在基线上提高了 +16%。
In this work we investigate and demonstrate benefits of a Bayesian approach to imitation learning from multiple sensor inputs, as applied to the task of opening office doors with a mobile manipulator. Augmenting policies with additional sensor inputs, such as RGB + depth cameras, is a straightforward approach to improving robot perception capabilities, especially for tasks that may favor different sensors in different situations. As we scale multi-sensor robotic learning to unstructured real-world settings (e.g. offices, homes) and more complex robot behaviors, we also increase reliance on simulators for cost, efficiency, and safety. Consequently, the sim-to-real gap across multiple sensor modalities also increases, making simulated validation more difficult. We show that using the Variational Information Bottleneck (Alemi et al., 2016) to regularize convolutional neural networks improves generalization to held-out domains and reduces the sim-to-real gap in a sensor-agnostic manner. As a side effect, the learned embeddings also provide useful estimates of model uncertainty for each sensor. We demonstrate that our method is able to help close the sim-to-real gap and successfully fuse RGB and depth modalities based on understanding of the situational uncertainty of each sensor. In a real-world office environment, we achieve 96% task success, improving upon the baseline by +16%.