论文标题

可解释的预测过程监视:用户评估

Explainable Predictive Process Monitoring: A User Evaluation

论文作者

Rizzi, Williams, Comuzzi, Marco, Di Francescomarino, Chiara, Ghidini, Chiara, Lee, Suhwan, Maggi, Fabrizio Maria, Nolte, Alexander

论文摘要

解释性是由于缺乏黑盒机器学习方法的透明度而引起的,这不会促进信任和接受机器学习算法。这也发生在预测过程监控字段中,在这种情况下,通过应用机器学习技术获得的预测需要向用户解释,以获得他们的信任和接受。在这项工作中,我们对用户评估进行了解释方法,以进行预测过程监测,以调查提供的解释以及如何理解所提供的解释; (ii)在决策任务方面非常有用;(iii)可以进一步改善工艺分析师,并具有不同的机器学习专业水平。用户评估的结果表明,尽管解释图总体上是可以理解的,对于业务流程管理用户的决策任务(在机器学习方面和没有经验的情况下),但在不同地块的理解和使用中存在差异,以及在不同的机器学习专业知识的用户中,可以理解和使用它们。

Explainability is motivated by the lack of transparency of black-box Machine Learning approaches, which do not foster trust and acceptance of Machine Learning algorithms. This also happens in the Predictive Process Monitoring field, where predictions, obtained by applying Machine Learning techniques, need to be explained to users, so as to gain their trust and acceptance. In this work, we carry on a user evaluation on explanation approaches for Predictive Process Monitoring aiming at investigating whether and how the explanations provided (i) are understandable; (ii) are useful in decision making tasks;(iii) can be further improved for process analysts, with different Machine Learning expertise levels. The results of the user evaluation show that, although explanation plots are overall understandable and useful for decision making tasks for Business Process Management users -- with and without experience in Machine Learning -- differences exist in the comprehension and usage of different plots, as well as in the way users with different Machine Learning expertise understand and use them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源