论文标题
暂时社区的添加使前缀和子间隔expspace complete的逻辑
The addition of temporal neighborhood makes the logic of prefixes and sub-intervals EXPSPACE-complete
论文作者
论文摘要
Stockmeyer的经典结果给出了无恒星通用正则表达式空虚问题的非质量下限。该结果与间隔时间逻辑的满足性问题密切相关,尤其是使用所谓的Chop运算符的公式。这样的操作员确实可以解释为普通语言的串联操作的倒数,并且这种对应关系可以降低无星通的正则表达式的非偏置性与同质性假设下CHOP间隔时间逻辑的公式的不偏置性。在本文中,我们研究了适当的CHOP间隔时间逻辑的可满足性问题的复杂性,可以将其视为Halpern和Shoham间隔逻辑的片段。我们首先考虑逻辑$ \ mathsf {bd} _ {hom} $具有模态$ b $,用于\ emph {bekits},对应于\ emph {offer}的pairs for nrewate},对应于\ emph {ofer}的前缀关系,对应于infix withix residation。 $ \ mathsf {bd} _ {hom} $的同质模型自然对应于由限制形式的正则表达式定义的语言,这些语言使用联合,补充和前缀和ifix关系的倒置。最近已显示这样的片段是pspace complete。在本文中,我们研究了扩展$ \ Mathsf {bd} _ {hom} $,其中具有时间邻域模态$ a $(对应于Allen Relation \ Emph {Meets}),并证明它增加了其表现力和复杂性。特别是,我们表明所产生的逻辑$ \ mathsf {bda} _ {hom} $是expspace-complete。
A classic result by Stockmeyer gives a non-elementary lower bound to the emptiness problem for star-free generalized regular expressions. This result is intimately connected to the satisfiability problem for interval temporal logic, notably for formulas that make use of the so-called chop operator. Such an operator can indeed be interpreted as the inverse of the concatenation operation on regular languages, and this correspondence enables reductions between non-emptiness of star-free generalized regular expressions and satisfiability of formulas of the interval temporal logic of chop under the homogeneity assumption. In this paper, we study the complexity of the satisfiability problem for suitable weakenings of the chop interval temporal logic, that can be equivalently viewed as fragments of Halpern and Shoham interval logic. We first consider the logic $\mathsf{BD}_{hom}$ featuring modalities $B$, for \emph{begins}, corresponding to the prefix relation on pairs of intervals, and $D$, for \emph{during}, corresponding to the infix relation. The homogeneous models of $\mathsf{BD}_{hom}$ naturally correspond to languages defined by restricted forms of regular expressions, that use union, complementation, and the inverses of the prefix and infix relations. Such a fragment has been recently shown to be PSPACE-complete . In this paper, we study the extension $\mathsf{BD}_{hom}$ with the temporal neighborhood modality $A$ (corresponding to the Allen relation \emph{Meets}), and prove that it increases both its expressiveness and complexity. In particular, we show that the resulting logic $\mathsf{BDA}_{hom}$ is EXPSPACE-complete.