论文标题

深度学习可以应用于基于模型的多目标跟踪吗?

Can Deep Learning be Applied to Model-Based Multi-Object Tracking?

论文作者

Pinto, Juliano, Hess, Georg, Ljungbergh, William, Xia, Yuxuan, Wymeersch, Henk, Svensson, Lennart

论文摘要

多对象跟踪(MOT)是使用嘈杂的测量值跟踪未知和随时间变化的对象状态的问题,以及重要应用,例如自动驾驶,跟踪动物行为,防御系统等。近年来,深度学习(DL)已越来越多地用于改善跟踪性能,但主要是在测量值高维且没有可用模型的测量可能性和对象动态模型的设置中。相反,基于模型的设置并没有吸引太多关注,目前尚不清楚DL方法是否可以胜过基于模型的传统贝叶斯方法,而基于模型的贝叶斯方法在这种情况下是最新的(SOTA)。在本文中,我们提出了一个基于变压器的DL跟踪器,并在基于模型的设置中评估了其性能,将其与基于SOTA模型的贝叶斯方法进行了多种不同任务的比较。我们的结果表明,所提出的DL方法可以与简单任务中基于模型的方法的性能相匹配,同时在任务变得更复杂时表现出色,要么是由于数据关联复杂性的增加,要么是由于环境模型的更强的非线性。

Multi-object tracking (MOT) is the problem of tracking the state of an unknown and time-varying number of objects using noisy measurements, with important applications such as autonomous driving, tracking animal behavior, defense systems, and others. In recent years, deep learning (DL) has been increasingly used in MOT for improving tracking performance, but mostly in settings where the measurements are high-dimensional and there are no available models of the measurement likelihood and the object dynamics. The model-based setting instead has not attracted as much attention, and it is still unclear if DL methods can outperform traditional model-based Bayesian methods, which are the state of the art (SOTA) in this context. In this paper, we propose a Transformer-based DL tracker and evaluate its performance in the model-based setting, comparing it to SOTA model-based Bayesian methods in a variety of different tasks. Our results show that the proposed DL method can match the performance of the model-based methods in simple tasks, while outperforming them when the task gets more complicated, either due to an increase in the data association complexity, or to stronger nonlinearities of the models of the environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源