论文标题
有趣的SIS:一种完全无监督的手术仪器分割方法
FUN-SIS: a Fully UNsupervised approach for Surgical Instrument Segmentation
论文作者
论文摘要
内窥镜图像的自动手术仪器分割是许多计算机辅助应用的至关重要的基础,用于微创手术。到目前为止,最先进的方法完全依赖于通过手动注释获得的地面监督信号的可用性,因此大规模收集昂贵。在本文中,我们提出了有趣的sis,这是一种对二元手术仪器分割的完全无意识的方法。 Fun-Sis仅依靠隐式运动信息和仪器形状 - 培训完全未标记的内窥镜视频,训练一个人的分割模型。我们将形状 - 基准定义为仪器的现实细分面具,不一定来自与视频相同的数据集/域。可以以各种方便的方式收集形状,例如从其他数据集回收现有注释。我们利用它们作为一种新型生成对抗方法的一部分,可以在训练过程中对光流图像进行无监督的仪器分割。然后,我们将获得的仪器掩模用作伪标签,以训练人均分割模型。为此,我们开发了一种从噪声标签结构进行学习,旨在从这些伪标签中提取清洁监督信号,利用其特殊的噪声属性。我们验证了三个手术数据集上的拟议贡献,包括Miccai 2017 Endovis机器人仪器分割挑战数据集。所获得的完全不受欢迎的手术仪器分割结果几乎与完全监督的最先进方法相当。这表明该提出的方法的巨大潜力是利用在微创手术的背景下产生的大量未标记数据。
Automatic surgical instrument segmentation of endoscopic images is a crucial building block of many computer-assistance applications for minimally invasive surgery. So far, state-of-the-art approaches completely rely on the availability of a ground-truth supervision signal, obtained via manual annotation, thus expensive to collect at large scale. In this paper, we present FUN-SIS, a Fully-UNsupervised approach for binary Surgical Instrument Segmentation. FUN-SIS trains a per-frame segmentation model on completely unlabelled endoscopic videos, by solely relying on implicit motion information and instrument shape-priors. We define shape-priors as realistic segmentation masks of the instruments, not necessarily coming from the same dataset/domain as the videos. The shape-priors can be collected in various and convenient ways, such as recycling existing annotations from other datasets. We leverage them as part of a novel generative-adversarial approach, allowing to perform unsupervised instrument segmentation of optical-flow images during training. We then use the obtained instrument masks as pseudo-labels in order to train a per-frame segmentation model; to this aim, we develop a learning-from-noisy-labels architecture, designed to extract a clean supervision signal from these pseudo-labels, leveraging their peculiar noise properties. We validate the proposed contributions on three surgical datasets, including the MICCAI 2017 EndoVis Robotic Instrument Segmentation Challenge dataset. The obtained fully-unsupervised results for surgical instrument segmentation are almost on par with the ones of fully-supervised state-of-the-art approaches. This suggests the tremendous potential of the proposed method to leverage the great amount of unlabelled data produced in the context of minimally invasive surgery.