论文标题
DeepHybrid:关于汽车雷达光谱的深度学习和对象分类的反射
DeepHybrid: Deep Learning on Automotive Radar Spectra and Reflections for Object Classification
论文作者
论文摘要
自动化的车辆需要准确检测和分类对象和流量参与者。使用汽车雷达传感器可靠的对象分类已被证明是具有挑战性的。我们提出了一种结合经典雷达信号处理和深度学习算法的方法。有关雷达反射水平的范围 - 齐路信息用于从范围多普勒频谱中提取稀疏的感兴趣区域。这用作对神经网络(NN)的输入,该输入对不同类型的固定物体和移动对象进行了分类。我们提出了一个杂种模型(深杂种),该模型既接收雷达光谱又是输入的反射属性,例如雷达横截面。实验表明,与仅使用光谱的模型相比,这可以提高分类性能。此外,应用神经体系结构搜索(NAS)算法以找到资源有效且高性能的NN。 NAS在保留准确性的同时,NN几乎比手动设计的数量级小。建议的方法可用于改善自动紧急制动或避免碰撞系统。
Automated vehicles need to detect and classify objects and traffic participants accurately. Reliable object classification using automotive radar sensors has proved to be challenging. We propose a method that combines classical radar signal processing and Deep Learning algorithms. The range-azimuth information on the radar reflection level is used to extract a sparse region of interest from the range-Doppler spectrum. This is used as input to a neural network (NN) that classifies different types of stationary and moving objects. We present a hybrid model (DeepHybrid) that receives both radar spectra and reflection attributes as inputs, e.g. radar cross-section. Experiments show that this improves the classification performance compared to models using only spectra. Moreover, a neural architecture search (NAS) algorithm is applied to find a resource-efficient and high-performing NN. NAS yields an almost one order of magnitude smaller NN than the manually-designed one while preserving the accuracy. The proposed method can be used for example to improve automatic emergency braking or collision avoidance systems.