论文标题

普通树中当地可检查问题的有效分类

Efficient Classification of Locally Checkable Problems in Regular Trees

论文作者

Balliu, Alkida, Brandt, Sebastian, Chang, Yi-Jun, Olivetti, Dennis, Studený, Jan, Suomela, Jukka

论文摘要

我们提供了实用,有效的算法,这些算法会在两个设置中自动确定$ [θ(\ log n),θ(n)] $区域中给定的本地可检查图问题的渐近分布式圆形复杂性。我们提出了一种无根据的普通树和另一种算法的算法,用于生根的常规树。该算法将当地可检查的标签问题描述为输入,并且运行时间在问题描述的大小上是多项式。该算法决定该问题是否可以在$ O(\ log n)$ rounds中解决。如果没有,众所周知,对于某些$ k = 1、2,\ dotsc $,复杂性必须为$θ(n^{1/k})$,在这种情况下,算法还输出了指数$ k $的正确值。 在$ o(\ log n)$ case中的根树中,我们可以通过使用先前工作的算法进一步确定精确的复杂性类;对于未根的树,在$ O(\ log n)$区域中更细粒度的分类仍然是一个悬而未决的问题。

We give practical, efficient algorithms that automatically determine the asymptotic distributed round complexity of a given locally checkable graph problem in the $[Θ(\log n), Θ(n)]$ region, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in $O(\log n)$ rounds. If not, it is known that the complexity has to be $Θ(n^{1/k})$ for some $k = 1, 2, \dotsc$, and in this case the algorithms also output the right value of the exponent $k$. In rooted trees in the $O(\log n)$ case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the $O(\log n)$ region remains an open question.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源