论文标题

提高评级和与利点推荐系统的相关性

Improving Rating and Relevance with Point-of-Interest Recommender System

论文作者

Bashir, Syed Raza, Misic, Vojislav

论文摘要

兴趣点(POI)的建议在基于位置的社交网络中至关重要。它使用户和位置更容易共享信息。最近,研究人员倾向于通过将POI视为大规模检索系统,这些系统需要大量代表查询项目相关性的培训数据。但是,在检索系统中收集用户反馈是一项昂贵的任务。现有的POI推荐系统仅根据用户和项目(位置)交互提出建议。但是,有许多反馈来源需要考虑。例如,当用户访问POI时,POI是关于的。在开发POI建议时,必须整合所有这些不同类型的反馈是必不可少的。在本文中,我们建议使用用户和项目信息以及辅助信息来改进检索系统中的建议建模。我们开发了一个深层的神经网络体系结构,以在存在协作和内容信息的情况下对查询项目的相关性进行建模。我们还通过包含来自用户反馈数据的上下文信息来提高查询和项目的学会表示质量。这些学习的表示形式应用于大规模数据集,从而取得了重大改进。

The recommendation of points of interest (POIs) is essential in location-based social networks. It makes it easier for users and locations to share information. Recently, researchers tend to recommend POIs by treating them as large-scale retrieval systems that require a large amount of training data representing query-item relevance. However, gathering user feedback in retrieval systems is an expensive task. Existing POI recommender systems make recommendations based on user and item (location) interactions solely. However, there are numerous sources of feedback to consider. For example, when the user visits a POI, what is the POI is about and such. Integrating all these different types of feedback is essential when developing a POI recommender. In this paper, we propose using user and item information and auxiliary information to improve the recommendation modelling in a retrieval system. We develop a deep neural network architecture to model query-item relevance in the presence of both collaborative and content information. We also improve the quality of the learned representations of queries and items by including the contextual information from the user feedback data. The application of these learned representations to a large-scale dataset resulted in significant improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源