论文标题
概率时间序列预测的集合共形分位数回归
Ensemble Conformalized Quantile Regression for Probabilistic Time Series Forecasting
论文作者
论文摘要
本文提出了一种新型的概率预测方法,称为集合保形分解回归(ENCQR)。 ENCQR构造了无分布和大约有效的预测间隔(PI),适用于非组织和异方差时间序列数据。可以将ENCQR应用于通用预测模型,包括深度学习体系结构。 ENCQR利用了引导程序集合估计器,该集合估计器可以通过删除数据交换性的要求来将共形预测变量用于时间序列。集合学习者被用作执行分数回归的通用机器学习算法,从而使PI的长度适应数据中的局部变异性。在实验中,我们预测时间序列为以不同量的异方差性为特征。结果表明,ENCQR优于基于分位数回归或共形预测的模型,并且提供了更清晰,更有用和有效的PI。
This paper presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR). EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), which are suitable for nonstationary and heteroscedastic time series data. EnCQR can be applied on top of a generic forecasting model, including deep learning architectures. EnCQR exploits a bootstrap ensemble estimator, which enables the use of conformal predictors for time series by removing the requirement of data exchangeability. The ensemble learners are implemented as generic machine learning algorithms performing quantile regression, which allow the length of the PIs to adapt to local variability in the data. In the experiments, we predict time series characterized by a different amount of heteroscedasticity. The results demonstrate that EnCQR outperforms models based only on quantile regression or conformal prediction, and it provides sharper, more informative, and valid PIs.