论文标题

使用截短的层次B-SPLINES稳定浸入式等几何分析的基于剩余的误差估计和适应性

Residual-based error estimation and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical B-splines

论文作者

Divi, Sai C., van Zuijlen, Pieter H., Hoang, Tuong, de Prenter, Frits, Auricchio, Ferdinando, Reali, Alessandro, van Brummelen, E. Harald, Verhoosel, Clemens V.

论文摘要

我们提出了一种自适应网状精炼策略,用于浸入均衡分析,并用于稳定的热传导和粘性流动问题。拟议的策略基于基于残差的误差估计,该误差估计是通过合适的稳定稳定和边界项来量身定制的。针对拉普拉斯和斯托克斯问题详细阐述了元素误差指标,并提出了基于THB的本地网格细化策略。误差估计和适应性过程应用于一系列基准问题,证明了该技术对于一系列平滑和非平滑问题的适用性。适应性策略还集成到基于扫描的分析工作流程中,能够生成可靠的,错误控制的扫描数据结果,而无需大量的用户交互或干预措施。

We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the incorporation of appropriately scaled stabilization and boundary terms. Element-wise error indicators are elaborated for the Laplace and Stokes problems, and a THB-spline-based local mesh refinement strategy is proposed. The error estimation .and adaptivity procedure is applied to a series of benchmark problems, demonstrating the suitability of the technique for a range of smooth and non-smooth problems. The adaptivity strategy is also integrated in a scan-based analysis workflow, capable of generating reliable, error-controlled, results from scan data, without the need for extensive user interactions or interventions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源