论文标题
用于学习图像去缩的现实模糊综合
Realistic Blur Synthesis for Learning Image Deblurring
论文作者
论文摘要
基于训练学习的脱毛方法需要大量的模糊和清晰的图像对。不幸的是,现有的合成数据集还不够现实,对其进行训练的脱毛模型无法有效处理真正的模糊图像。尽管最近提出了真实的数据集,但它们提供了有限的场景和相机设置,并且为各种设置捕获真实数据集仍然具有挑战性。为了解决这一问题,本文分析了各种因素,这些因素引入了真实和合成模糊图像之间的差异。为此,我们提出了rsblur,这是一个具有真实图像的新型数据集和相应的清晰图像序列,以详细分析真实和合成模糊之间的差异。使用数据集,我们揭示了不同因素在模糊生成过程中的影响。基于分析,我们还提出了一种新型的模糊合成管道,以使更现实的模糊综合。我们表明,我们的合成管道可以改善实际模糊图像上的过度性能。
Training learning-based deblurring methods demands a tremendous amount of blurred and sharp image pairs. Unfortunately, existing synthetic datasets are not realistic enough, and deblurring models trained on them cannot handle real blurred images effectively. While real datasets have recently been proposed, they provide limited diversity of scenes and camera settings, and capturing real datasets for diverse settings is still challenging. To resolve this, this paper analyzes various factors that introduce differences between real and synthetic blurred images. To this end, we present RSBlur, a novel dataset with real blurred images and the corresponding sharp image sequences to enable a detailed analysis of the difference between real and synthetic blur. With the dataset, we reveal the effects of different factors in the blur generation process. Based on the analysis, we also present a novel blur synthesis pipeline to synthesize more realistic blur. We show that our synthesis pipeline can improve the deblurring performance on real blurred images.