论文标题

用于估计心率的机器学习模型和面部区域视频:专利,数据集和文献的评论

Machine learning models and facial regions videos for estimating heart rate: a review on Patents, Datasets and Literature

论文作者

Pagano, Tiago Palma, Ortega, Lucas Lemos, Santos, Victor Rocha, Bonfim, Yasmin da Silva, Paranhos, José Vinícius Dantas, Sá, Paulo Henrique Miranda, Nascimento, Lian Filipe Santana, Winkler, Ingrid, Nascimento, Erick Giovani Sperandio

论文摘要

估计心率对于在各种情况下监视用户很重要。基于面部视频的估计正在越来越多地研究,因为它可以以非侵入性的方式监视心脏信息,并且因为设备更简单,只需要捕获用户脸的摄像机。从这些用户脸部的视频中,机器学习能够估计心率。这项研究调查了使用机器学习模型通过专利,数据集和文章审查估算面部视频的心率的好处和挑战。我们搜索了Derwent Innovation,IEEE Xplore,Scopus和Web of Science知识库,并确定了7份专利申请,11个数据集和20篇有关心率,照相体积学或心电图数据的文章。在专利方面,我们注意到作者所描述的与心率估计相关的发明的优势。在数据集方面,我们发现其中大多数是出于学术目的,并且具有不同的符号和注释,可以覆盖以外的心跳估计。在文章方面,我们发现了技术,例如提取心率读取的感兴趣的区域,并使用视频放大倍率进行小运动提取,以及EVM-CNN和VGG-16等模型,这些模型提取了观察到的个人心率,这是信号提取的最佳兴趣区域以及处理它们的方法。

Estimating heart rate is important for monitoring users in various situations. Estimates based on facial videos are increasingly being researched because it makes it possible to monitor cardiac information in a non-invasive way and because the devices are simpler, requiring only cameras that capture the user's face. From these videos of the user's face, machine learning is able to estimate heart rate. This study investigates the benefits and challenges of using machine learning models to estimate heart rate from facial videos, through patents, datasets, and articles review. We searched Derwent Innovation, IEEE Xplore, Scopus, and Web of Science knowledge bases and identified 7 patent filings, 11 datasets, and 20 articles on heart rate, photoplethysmography, or electrocardiogram data. In terms of patents, we note the advantages of inventions related to heart rate estimation, as described by the authors. In terms of datasets, we discovered that most of them are for academic purposes and with different signs and annotations that allow coverage for subjects other than heartbeat estimation. In terms of articles, we discovered techniques, such as extracting regions of interest for heart rate reading and using Video Magnification for small motion extraction, and models such as EVM-CNN and VGG-16, that extract the observed individual's heart rate, the best regions of interest for signal extraction and ways to process them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源