论文标题
深度兴趣突出显示网络,用于触发诱导的建议中点击率预测
Deep Interest Highlight Network for Click-Through Rate Prediction in Trigger-Induced Recommendation
论文作者
论文摘要
在许多古典电子商务平台中,个性化的建议已被证明具有巨大的业务价值,可以提高用户满意度并增加平台的收入。在本文中,我们提出了一个新的推荐问题,即触发诱导的建议(TIR),可以用触发物品明确诱发用户的即时兴趣,并建议使用随访相关的目标项目。 TIR在电子商务平台上已变得无处不在,并且很受欢迎。在本文中,我们发现,尽管现有的推荐模型在传统建议方案中是有效的,但通过基于其巨大的历史行为来挖掘用户的兴趣,但由于这些方案之间的差异,他们正在努力发现用户在TIR方案中的即时兴趣,从而导致较低的表现。为了解决该问题,我们提出了一种新颖的推荐方法,名为“深度兴趣”突出显示网络(DIHN),以在TIR方案中进行点击率(CTR)预测。它具有三个主要组件,包括1)用户意图网络(UIN),它们响应以生成精确的概率分数,以预测用户对触发项目的意图; 2)融合嵌入模块(FEM),该模块根据UIN的预测自适应地融合触发项目和目标项目嵌入; (3)混合兴趣提取模块(HIEM),可以根据FEM的结果有效地突出其行为的即时利益。在现实世界中的电子商务平台上进行了广泛的离线和在线评估,这表明了Dihn优于最先进的方法。
In many classical e-commerce platforms, personalized recommendation has been proven to be of great business value, which can improve user satisfaction and increase the revenue of platforms. In this paper, we present a new recommendation problem, Trigger-Induced Recommendation (TIR), where users' instant interest can be explicitly induced with a trigger item and follow-up related target items are recommended accordingly. TIR has become ubiquitous and popular in e-commerce platforms. In this paper, we figure out that although existing recommendation models are effective in traditional recommendation scenarios by mining users' interests based on their massive historical behaviors, they are struggling in discovering users' instant interests in the TIR scenario due to the discrepancy between these scenarios, resulting in inferior performance. To tackle the problem, we propose a novel recommendation method named Deep Interest Highlight Network (DIHN) for Click-Through Rate (CTR) prediction in TIR scenarios. It has three main components including 1) User Intent Network (UIN), which responds to generate a precise probability score to predict user's intent on the trigger item; 2) Fusion Embedding Module (FEM), which adaptively fuses trigger item and target item embeddings based on the prediction from UIN; and (3) Hybrid Interest Extracting Module (HIEM), which can effectively highlight users' instant interest from their behaviors based on the result of FEM. Extensive offline and online evaluations on a real-world e-commerce platform demonstrate the superiority of DIHN over state-of-the-art methods.