论文标题

通过楼梯网络进行简单准确的人类姿势估计

Towards Simple and Accurate Human Pose Estimation with Stair Network

论文作者

Jiang, Chenru, Huang, Kaizhu, Zhang, Shufei, Zhang, Shufei, Xiao, Jimin, Niu, Zhenxing, Hussain, Amir

论文摘要

在本文中,我们专注于解决精确的关键点坐标回归任务。大多数现有的方法采用了具有大量参数的复杂网络,从而导致了一个沉重的模型,实践中的成本效益差。为了克服这一限制,我们开发了一个小但歧视性的模型,称为楼梯网络,可以简单地将其堆叠在准确的多阶段姿势估计系统上。具体而言,为了降低计算成本,楼梯网络由新型的基本特征提取块组成,这些块的重点是促进特征多样性并获得较少参数的丰富本地表示,从而使效率和性能达到令人满意的平衡。为了进一步提高性能,我们引入了两种机制,其计算成本可忽略不计,重点是特征融合和补充。我们证明了在两个标准数据集上楼梯网络的有效性,例如,1阶段的阶梯网络在可可测试数据集上的准确度比HRNET的精度高出5.5%,其中80 \%\%\%的参数和少68%的Gflops。

In this paper, we focus on tackling the precise keypoint coordinates regression task. Most existing approaches adopt complicated networks with a large number of parameters, leading to a heavy model with poor cost-effectiveness in practice. To overcome this limitation, we develop a small yet discrimicative model called STair Network, which can be simply stacked towards an accurate multi-stage pose estimation system. Specifically, to reduce computational cost, STair Network is composed of novel basic feature extraction blocks which focus on promoting feature diversity and obtaining rich local representations with fewer parameters, enabling a satisfactory balance on efficiency and performance. To further improve the performance, we introduce two mechanisms with negligible computational cost, focusing on feature fusion and replenish. We demonstrate the effectiveness of the STair Network on two standard datasets, e.g., 1-stage STair Network achieves a higher accuracy than HRNet by 5.5% on COCO test dataset with 80\% fewer parameters and 68% fewer GFLOPs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源