论文标题

在观察数据中进行比较有效性研究的三角仪器变量,混淆器调整和差异差异方法

Triangulating Instrumental Variable, confounder adjustment and Difference-in-Difference methods for comparative effectiveness research in observational data

论文作者

Güdemann, Laura, Dennis, John M., McGovern, Andrew P., Rodgers, Lauren R., Shields, Beverley M., Henley, William, Bowden, Jack

论文摘要

观察研究可以在评估竞争治疗的比较有效性中发挥有用的作用。在一项临床试验中,参与者与治疗组的随机分配通常会导致相对于可能的混杂因素的均衡组,这使得分析直接。但是,在分析观察数据时,无法衡量的混淆的潜力使比较治疗效果更具挑战性。因果推理方法,例如仪器变量和先前的均值比方法,使得有可能规避在数据中未测量或以错误测量的混杂因素进行调整的需求。通过多变量回归和倾向得分匹配的直接混杂器调整也具有相当大的实用性。每种方法都依赖于一组不同的假设,并利用了数据的不同方面。在本文中,我们描述了每种方法的假设,并在模拟研究中评估了违反这些假设的影响。我们提出了先前的结果增强仪器变量方法,该方法从治疗开始前后利用数据,并且对违反关键假设的行为是强大的。最后,我们建议使用异质性统计量来确定两个或多个估计在统计上是否相似,考虑到它们的相关性。我们说明了我们的因果框架,以评估开处方的患者中生殖器感染的风险,开处方的钠 - 葡萄糖共转移者-2抑制剂与二肽基肽酶-4抑制剂与临床实践研究数据链接中的观察数据相对于2型糖尿病的二线治疗。

Observational studies can play a useful role in assessing the comparative effectiveness of competing treatments. In a clinical trial the randomization of participants to treatment and control groups generally results in well-balanced groups with respect to possible confounders, which makes the analysis straightforward. However, when analysing observational data, the potential for unmeasured confounding makes comparing treatment effects much more challenging. Causal inference methods such as Instrumental Variable and Prior Even Rate Ratio approaches make it possible to circumvent the need to adjust for confounding factors that have not been measured in the data or measured with error. Direct confounder adjustment via multivariable regression and Propensity score matching also have considerable utility. Each method relies on a different set of assumptions and leverages different aspects of the data. In this paper, we describe the assumptions of each method and assess the impact of violating these assumptions in a simulation study. We propose the prior outcome augmented Instrumental Variable method that leverages data from before and after treatment initiation, and is robust to the violation of key assumptions. Finally, we propose the use of a heterogeneity statistic to decide if two or more estimates are statistically similar, taking into account their correlation. We illustrate our causal framework to assess the risk of genital infection in patients prescribed Sodium-glucose co-transporter-2 inhibitors versus Dipeptidyl peptidase-4 inhibitors as second-line treatment for Type 2 Diabets using observational data from the Clinical Practice Research Datalink.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源