论文标题

通过Laplacian eigenmaps对多吸收器动力学系统的线性化和鉴定

Linearization and Identification of Multiple-Attractor Dynamical Systems through Laplacian Eigenmaps

论文作者

Fichera, Bernardo, Billard, Aude

论文摘要

动力系统(DS)是建模和了解时间不断发展的现象的基础,并在物理,生物学和控制中应用。由于确定动力学的分析描述通常很困难,因此首选数据驱动的方法用于识别和控制具有多个平衡点的非线性DS。此类DS的识别主要被视为有监督的学习问题。取而代之的是,我们专注于无监督的学习方案,在该方案中我们既不知道数字也不知道动态的类型。我们提出了一种基于图的光谱聚类方法,该方法利用速度增强的内核来连接属于相同动力学的数据点,同时保留自然的时间演化。我们研究图形laplacian的特征值和特征值,并表明它们形成了一组正交的嵌入空间,每种亚动力学都一个。我们证明,始终存在一组二维嵌入空间,其中亚动力学是线性和n维嵌入空间,它们是准线性的。我们将算法的聚类性能与内核K-均值,光谱聚类和高斯混合物进行了比较,并表明,即使提供了正确数量的子动力学数量,它们也无法正确群集。我们学到了从拉普拉斯嵌入空间到原始空间的差异形态,并表明拉普拉斯嵌入的嵌入可通过与基于最先进的基于差异的方法相比,通过指数衰减的损失,可以通过指数衰减的损失良好地重建精度和更快的训练时间。

Dynamical Systems (DS) are fundamental to the modeling and understanding time evolving phenomena, and have application in physics, biology and control. As determining an analytical description of the dynamics is often difficult, data-driven approaches are preferred for identifying and controlling nonlinear DS with multiple equilibrium points. Identification of such DS has been treated largely as a supervised learning problem. Instead, we focus on an unsupervised learning scenario where we know neither the number nor the type of dynamics. We propose a Graph-based spectral clustering method that takes advantage of a velocity-augmented kernel to connect data points belonging to the same dynamics, while preserving the natural temporal evolution. We study the eigenvectors and eigenvalues of the Graph Laplacian and show that they form a set of orthogonal embedding spaces, one for each sub-dynamics. We prove that there always exist a set of 2-dimensional embedding spaces in which the sub-dynamics are linear and n-dimensional embedding spaces where they are quasi-linear. We compare the clustering performance of our algorithm to Kernel K-Means, Spectral Clustering and Gaussian Mixtures and show that, even when these algorithms are provided with the correct number of sub-dynamics, they fail to cluster them correctly. We learn a diffeomorphism from the Laplacian embedding space to the original space and show that the Laplacian embedding leads to good reconstruction accuracy and a faster training time through an exponential decaying loss compared to the state-of-the-art diffeomorphism-based approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源