论文标题
在分布矩阵的高度上
On heights of distributivity matrices
论文作者
论文摘要
我们构建了一个模型,其中存在一个常规高度的分布矩阵$λ$大于$ \ mathfrak {h} $; $λ= \ Mathfrak {C} $和$λ<\ Mathfrak {C} $都是可能的。分发性矩阵是一个不常见的疯狂家庭的精炼系统。在我们的证明中特别感兴趣的是保存$ \ Mathcal {B} $ - Canjarness。
We construct a model in which there exists a distributivity matrix of regular height $λ$ larger than $\mathfrak{h}$; both $λ= \mathfrak{c}$ and $λ< \mathfrak{c}$ are possible. A distributivity matrix is a refining system of mad families without common refinement. Of particular interest in our proof is the preservation of $\mathcal{B}$-Canjarness.