论文标题
繁重元素的电离和太阳等离子体中的绝热指数
Ionization of heavy elements and the adiabatic exponent in the solar plasma
论文作者
论文摘要
语境。绝热指数$γ_1$在太阳对流区的部分电离等离子体中作为热力学数量进行了研究。 目标。这项研究的目的是了解重元素对$γ_1$配置文件的影响。我们用SAHA-S方程计算了$γ_1$,用于不同的等离子体化学成分,我们分析了各个元素对$γ_1$的贡献。 方法。与纯氢储液等离子体获得的值相比,由于重元素的电离电离,我们研究了$γ_1$的下降。这些类型的差异表示为“ Z贡献”,我们分析了它们的八个元素(C,N,O,NE,MG,S,SI和FE),以及与太阳化学化合物相对应的元素的混合物。我们将单个Z贡献的线性组合与确切的Z贡献进行了比较。将最小二乘技术应用于整个Z贡献的分解为个体元素贡献的基础,我们获得了重元素的质量分数。 结果。重元素的Z贡献可以通过单个元素Z贡献的线性组合描述,高度准确度为5E-6。在太阳能混合物的示例中,考虑了从给定$γ_1$概况估算重元素的质量分数的反问题。在理想的数值模拟中,最丰富元素的质量分数可以比十分之一百分之十的相对精度确定。在$γ_1$配置文件中存在随机或系统错误的情况下,丰度估计变得非常准确。如果误差的幅度不超过1E-4,我们可以期望至少确定相对误差约为10%的氧丰度。
Context. The adiabatic exponent $Γ_1$ is studied as a thermodynamic quantity in the partially ionized plasma of the solar convection zone. Aims. The aim of this study is to understand the impact of heavy elements on the $Γ_1$ profile. We calculated $Γ_1$ with the SAHA-S equation of state for different chemical compositions of plasma, and we analyzed contributions of individual elements to $Γ_1$. Methods. We studied the decrease in $Γ_1$ due to the ionization of heavy elements in comparison with the value obtained for a pure hydrogen-helium plasma. These types of differences are denoted as "Z contributions", and we analyzed them for eight elements (C, N, O, Ne, Mg, S, Si, and Fe) as well as for a mixture of elements corresponding to the solar chemical composition. We compared linear combinations of individual Z contributions with the exact Z contribution. Applying a least-squares technique to the decomposition of the full Z contribution to a basis of individual-element contributions, we obtained the mass fractions of the heavy elements. Results. The Z contribution of heavy elements can be described by a linear combination of individual-element Z contributions with a high level of accuracy of 5e-6 . The inverse problem of estimating the mass fractions of heavy elements from a given $Γ_1$ profile was considered for the example of solar-type mixtures. In ideal numerical simulations, the mass fractions of the most abundant elements could be determined with a relative accuracy better than a few tenths of a percent. In the presence of random or systematic errors in the $Γ_1$ profile, abundance estimations become remarkably less accurate. If the amplitude of the errors does not exceed 1e-4, we can expect a determination of at least the oxygen abundance with a relative error of about 10%.