论文标题
通过图表示学习在图形数据上的交互式视觉模式搜索
Interactive Visual Pattern Search on Graph Data via Graph Representation Learning
论文作者
论文摘要
图是一种无处不在的数据结构,可在广泛的域中建模过程和关系。示例包括图像中的程序和语义场景图中的控制流图。识别图中的子图模式是理解其结构特性的重要方法。我们提出了一个Visual Analytics System GraphQ,以支持包含许多单个图形的数据库中的基于示例的,基于示例的子图模式搜索。为了支持快速的交互式查询,我们使用图形神经网络(GNN)将图形编码为固定长度潜在矢量表示,并在潜在空间中执行子图匹配。由于问题的复杂性,仍然很难在匹配结果中获得准确的一对一节点对应关系,这对于可视化和解释至关重要。因此,我们提出了一种新型的GNN,用于淋巴结对齐,以促进对查询结果的易于验证和解释。 GraphQ提供了带有查询编辑器和结果的多尺度可视化的视觉查询接口,以及用户反馈机制,用于提高结果以及其他约束。我们通过两个示例用法方案演示了GraphQ:在图像中分析程序工作流程和语义场景图中的可重复使用的子例程。定量实验表明,与基线GNN相比,NeuroAlign的节点分组精度提高了19-29%,与组合算法相比,最多可提供100倍的速度。我们与领域专家的定性研究证实了两种使用情况的有效性。
Graphs are a ubiquitous data structure to model processes and relations in a wide range of domains. Examples include control-flow graphs in programs and semantic scene graphs in images. Identifying subgraph patterns in graphs is an important approach to understanding their structural properties. We propose a visual analytics system GraphQ to support human-in-the-loop, example-based, subgraph pattern search in a database containing many individual graphs. To support fast, interactive queries, we use graph neural networks (GNNs) to encode a graph as fixed-length latent vector representation, and perform subgraph matching in the latent space. Due to the complexity of the problem, it is still difficult to obtain accurate one-to-one node correspondences in the matching results that are crucial for visualization and interpretation. We, therefore, propose a novel GNN for node-alignment called NeuroAlign, to facilitate easy validation and interpretation of the query results. GraphQ provides a visual query interface with a query editor and a multi-scale visualization of the results, as well as a user feedback mechanism for refining the results with additional constraints. We demonstrate GraphQ through two example usage scenarios: analyzing reusable subroutines in program workflows and semantic scene graph search in images. Quantitative experiments show that NeuroAlign achieves 19-29% improvement in node-alignment accuracy compared to baseline GNN and provides up to 100x speedup compared to combinatorial algorithms. Our qualitative study with domain experts confirms the effectiveness for both usage scenarios.