论文标题

通过图表示学习在图形数据上的交互式视觉模式搜索

Interactive Visual Pattern Search on Graph Data via Graph Representation Learning

论文作者

Song, Huan, Dai, Zeng, Xu, Panpan, Ren, Liu

论文摘要

图是一种无处不在的数据结构,可在广泛的域中建模过程和关系。示例包括图像中的程序和语义场景图中的控制流图。识别图中的子图模式是理解其结构特性的重要方法。我们提出了一个Visual Analytics System GraphQ,以支持包含许多单个图形的数​​据库中的基于示例的,基于示例的子图模式搜索。为了支持快速的交互式查询,我们使用图形神经网络(GNN)将图形编码为固定长度潜在矢量表示,并在潜在空间中执行子图匹配。由于问题的复杂性,仍然很难在匹配结果中获得准确的一对一节点对应关系,这对于可视化和解释至关重要。因此,我们提出了一种新型的GNN,用于淋巴结对齐,以促进对查询结果的易于验证和解释。 GraphQ提供了带有查询编辑器和结果的多尺度可视化的视觉查询接口,以及用户反馈机制,用于提高结果以及其他约束。我们通过两个示例用法方案演示了GraphQ:在图像中分析程序工作流程和语义场景图中的可重复使用的子例程。定量实验表明,与基线GNN相比,NeuroAlign的节点分组精度提高了19-29%,与组合算法相比,最多可提供100倍的速度。我们与领域专家的定性研究证实了两种使用情况的有效性。

Graphs are a ubiquitous data structure to model processes and relations in a wide range of domains. Examples include control-flow graphs in programs and semantic scene graphs in images. Identifying subgraph patterns in graphs is an important approach to understanding their structural properties. We propose a visual analytics system GraphQ to support human-in-the-loop, example-based, subgraph pattern search in a database containing many individual graphs. To support fast, interactive queries, we use graph neural networks (GNNs) to encode a graph as fixed-length latent vector representation, and perform subgraph matching in the latent space. Due to the complexity of the problem, it is still difficult to obtain accurate one-to-one node correspondences in the matching results that are crucial for visualization and interpretation. We, therefore, propose a novel GNN for node-alignment called NeuroAlign, to facilitate easy validation and interpretation of the query results. GraphQ provides a visual query interface with a query editor and a multi-scale visualization of the results, as well as a user feedback mechanism for refining the results with additional constraints. We demonstrate GraphQ through two example usage scenarios: analyzing reusable subroutines in program workflows and semantic scene graph search in images. Quantitative experiments show that NeuroAlign achieves 19-29% improvement in node-alignment accuracy compared to baseline GNN and provides up to 100x speedup compared to combinatorial algorithms. Our qualitative study with domain experts confirms the effectiveness for both usage scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源