论文标题

树木间谱

The Inter-magic Spectra of Trees

论文作者

Carbonero, Alvaro, Obata, Dylan

论文摘要

对于任何积极的固定$ h $,如果存在标签$ l:e(e(g)\ to \ mathbb {z} _h- \ \ {0 \ {0 \ {0 \} $,则图$ g =(v,e)$被称为$ h $ - $ by $$ l^+(v)= \ sum_ {uv \ in E(g)} \ l(uv)$$是一个常数映射。图$ g $的整数魔法频谱,用$ im(g)$表示,是\ athbb {n} $的所有$ h \ in $ g $ as $ g $ as $ g $ as $ h $ -magic的集合。到目前为止,最多只能确定五个直径树木的整数。在本文中,我们确定了直径六到更高的直径树木的整数。

For any positive integer $h$, a graph $G=(V,E)$ is said to be $h$-magic if there exists a labeling $l:E(G)\to \mathbb{Z}_h -\{0\} $ such that the induced vertex set labeling $\ l^+ : V(G) \to \mathbb{Z}_h \ $ defined by $$ l^+ (v)=\sum_{uv \in E(G)} \ l(uv) $$ is a constant map. The integer-magic spectrum of a graph $G$, denoted by $IM(G)$, is the set of all $h \in \mathbb{N} $ for which $G$ is $h$-magic. So far, only the integer-magic spectra of trees of diameter at most five have been determined. In this paper, we determine the integer-magic spectra of trees of diameter six and higher.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源