论文标题
弹道量子步行中的最大硬币行走纠缠
Maximal coin-walker entanglement in a ballistic quantum walk
论文作者
论文摘要
我们报告了位置抗恒定量子步行(IQW)的位置,可以用来产生最大的高维纠缠,同时保持波功能的二次加速扩散。我们的计算表明,最大的硬币跟踪器纠缠可以以任何奇怪的步骤或偶数步骤生成,并且在$ 2 $后,几乎最大的纠缠均可以均匀的步骤获得。我们通过稳定的节省资源的时态光学网络实施了智商,其中采用了极化的sagnac循环来实现精确的可调相移。我们的方法为高维工程开辟了一种有效的方法,并促进了对基于QW应用程序中硬币 - 摇摆器相互作用的作用的研究。
We report the position-inhomogeneous quantum walk (IQW) can be utilized to produce the maximal high dimensional entanglement while maintaining the quadratic speedup spread of the wave-function. Our calculations show that the maximal coin-walker entanglement can be generated in any odd steps or asymptotically in even steps, and the nearly maximal entanglement can be obtained in even steps after $2$. We implement the IQW by a stable resource-saving time-bin optical network, in which a polarization Sagnac loop is employed to realize the precisely tunable phase shift. Our approach opens up an efficient way for high-dimensional entanglement engineering as well as promotes investigations on the role of coin-walker interactions in QW based applications.