论文标题

深层单图像使用不对称周期生成和对抗框架来驱动

Deep Single Image Deraining using An Asymetric Cycle Generative and Adversarial Framework

论文作者

Liu, Wei, Jiang, Rui, Chen, Cheng, Lu, Tao, Xiong, Zixiang

论文摘要

实际上,雨水和雾通常同时存在,这可以大大降低场景图像的清晰度和质量。但是,大多数无监督的单图像驱动方法主要集中于忽略雾的降雨条纹,这导致低质量的性能。此外,这些方法是由这些方法产生的,并且缺乏多样性,因此面对复杂的降雨场景,结果不佳。为了解决上述问题,我们提出了一种新颖的不良循环生成框架和对抗框架(ACGF),以供训练合成和真实雨的图像,同时捕获雨条和雾特征,同时训练合成和真实的雨水图像。 ACGF由雨水 - 湿法2Clean(R2C)转换块和一个Clean2Rain-Fog(C2R)转换块组成。前者由雨水和DERAIN-FOG网络以及注意力雨林特征提取网络(ARFE)组成,由平行的降雨途径和雨水湿度提取路径组成,而后者仅包含合成雨转化路径。在雨水湿度提取路径中,为了更好地表征雨水融合功能,我们通过学习空间特征相关性来利用ARFE来利用全球和本地雨淋信息的自相似性。此外,为了提高C2R的翻译能力和模型的多样性,我们通过嵌入多雨的图像退化模型和混合歧视器来设计雨水雾特征解耦和重组网络(RFDR),以在合成雨转换路径中保留更丰富的纹理细节。基准雨林和雨水数据集的广泛实验表明,ACGF的表现优于最先进的方法。我们还进行了性能评估实验,以进一步证明ACGF的有效性。

In reality, rain and fog are often present at the same time, which can greatly reduce the clarity and quality of the scene image. However, most unsupervised single image deraining methods mainly focus on rain streak removal by disregarding the fog, which leads to low-quality deraining performance. In addition, the samples are rather homogeneous generated by these methods and lack diversity, resulting in poor results in the face of complex rain scenes. To address the above issues, we propose a novel Asymetric Cycle Generative and Adversarial framework (ACGF) for single image deraining that trains on both synthetic and real rainy images while simultaneously capturing both rain streaks and fog features. ACGF consists of a Rain-fog2Clean (R2C) transformation block and a Clean2Rain-fog (C2R) transformation block. The former consists of parallel rain removal path and rain-fog feature extraction path by the rain and derain-fog network and the attention rain-fog feature extraction network (ARFE) , while the latter only contains a synthetic rain transformation path. In rain-fog feature extraction path, to better characterize the rain-fog fusion feature, we employ an ARFE to exploit the self-similarity of global and local rain-fog information by learning the spatial feature correlations. Moreover, to improve the translational capacity of C2R and the diversity of models, we design a rain-fog feature decoupling and reorganization network (RFDR) by embedding a rainy image degradation model and a mixed discriminator to preserve richer texture details in synthetic rain conversion path. Extensive experiments on benchmark rain-fog and rain datasets show that ACGF outperforms state-of-the-art deraining methods. We also conduct defogging performance evaluation experiments to further demonstrate the effectiveness of ACGF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源