论文标题
非亚伯利亚的兰道 - 金吉堡理论
Non-Abelian Landau-Ginzburg Theory of Ferromagnetic Superconductivity and Photon-Spinon Mixing
论文作者
论文摘要
我们提出了一种有效的非亚洲超导性理论,即SU(2)XU(1)Abelian Landau-Ginzburg理论的扩展,可以将其视为由旋转和旋转doublet Doublet Cooper Pair制成的铁磁超导的有效理论。就像Abelian Landau-Ginzburg理论一样,它具有U(1)电磁相互作用,但新成分是Spin Doublet Cooper Pair之间的非Abelian SU(2)仪表相互作用。该理论的一个显着特征是SU(2)仪表玻色子的光子和对角线部分之间的混合。混合后,除了巨大的非对角线玻色子(巨大的非亚伯利亚镜下)外,它具有无质量的玻色子(无质量的非亚洲旋转子)和巨大的玻色子(巨大的光子)(巨大的光子),这些玻色子(巨大的非亚伯利亚镜下)诱导了旋转式旋转式旋转和下向上和下的合作组合对之间的自旋flip相互作用。因此,与普通的Landau-Ginzburg理论不同,它具有由无质量的非亚伯式Spinon介导的远距离相互作用,这可能是在铁磁超导体中观察到的远距离磁性和自旋波的原因。该理论的特征是三个量表。除了由希格斯场的质量固定的相关长度外,它具有两个不同的渗透长度,一个由光子的质量固定(产生众所周知的meissner效应),另一个是由异径分子蜘蛛的质量固定的(这决定了旋转FLIP相互作用的尺度)。该理论的非亚伯式结构自然可容纳新的拓扑对象,非阿布里科索夫量化了自旋涡流(以及众所周知的abrikosov涡流)和非亚伯利亚自旋单子。我们讨论了非亚伯·兰道 - 金茨堡理论的身体含义。
We propose an effective theory of non-Abelian superconductivity, an SU(2)xU(1) extension of the Abelian Landau-Ginzburg theory, which could be viewed as an effective theory of ferromagnetic superconductivity made of spin-up and spin-down doublet Cooper pair. Just like the Abelian Landau-Ginzburg theory it has the U(1) electromagnetic interaction, but the new ingredient is the non-Abelian SU(2) gauge interaction between the spin doublet Cooper pair. A remarkable feature of the theory is the mixing between the photon and the diagonal part of the SU(2) gauge boson. After the mixing it has massless gauge boson (the massless non-Abelian spinon) and massive gauge boson (the massive photon), in addition to the massive off-diagonal gauge bosons (the massive non-Abelian spinons) which induces the spin-flip interaction between the spin up and down components of the Cooper pair. So, unlike the ordinary Landau-Ginzburg theory it has a long range interaction mediated by the massless non-Abelian spinon, which could be responsible for the long range magnetic order and spin waves observed in ferromagnetic superconductors. The theory is characterized by three scales. In addition to the correlation length fixed by the mass of the Higgs field it has two different penetration lengths, the one fixed by the mass of the photon (which generates the well known Meissner effect) and the other fixed by the mass of the off-diagonal spinons (which determines the scale of the spin flip interaction). The non-Abelian structure of the theory naturally accommodates new topological objects, the non-Abrikosov quantized spin vortex (as well as the well known Abrikosov vortex) and non-Abelian spin monopole. We discuss the physical implications of the non-Abelian Landau-Ginzburg theory.