论文标题
用于流形的扩散模型的伪数值方法
Pseudo Numerical Methods for Diffusion Models on Manifolds
论文作者
论文摘要
降级扩散概率模型(DDPM)可以生成高质量的样本,例如图像和音频样品。但是,DDPM需要数百到数千次迭代才能产生最终样品。通过调整方差时间表(例如,改进的降解扩散概率模型)或降解方程(例如,deno deo deno deofusing扩散隐式模型(DDIMS)),几项先前的工作成功加速了DDPM。但是,这些加速度方法无法保持样品的质量,甚至以高速速度引入新的噪声,从而限制了它们的可实用性。为了在保持样本质量的同时加速推理过程,我们提供了一个新的视角,即DDPM应被视为在流形上解决微分方程。从这样的角度来看,我们提出了扩散模型(PNDMS)的伪数值方法。具体而言,我们弄清楚如何在流形上求解微分方程,并表明DDIM是伪数值方法的简单情况。我们将几种经典的数值方法更改为相应的伪数值方法,并发现伪线性多步法方法在大多数情况下都是最好的。根据我们的实验,通过直接使用CIFAR10,Celeba和LSUN上的预训练模型,PNDMS可以生成更高质量的合成图像,而与1000步ddims(20倍速度)相比,只有50个步骤(20x速度),显着超过了DDIMS,具有250个步骤(FID约为0.4左右),并且对不同的差异计划进行了良好的通用。我们的实施可从https://github.com/luping-liu/pndm获得。
Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples. However, DDPMs require hundreds to thousands of iterations to produce final samples. Several prior works have successfully accelerated DDPMs through adjusting the variance schedule (e.g., Improved Denoising Diffusion Probabilistic Models) or the denoising equation (e.g., Denoising Diffusion Implicit Models (DDIMs)). However, these acceleration methods cannot maintain the quality of samples and even introduce new noise at a high speedup rate, which limit their practicability. To accelerate the inference process while keeping the sample quality, we provide a fresh perspective that DDPMs should be treated as solving differential equations on manifolds. Under such a perspective, we propose pseudo numerical methods for diffusion models (PNDMs). Specifically, we figure out how to solve differential equations on manifolds and show that DDIMs are simple cases of pseudo numerical methods. We change several classical numerical methods to corresponding pseudo numerical methods and find that the pseudo linear multi-step method is the best in most situations. According to our experiments, by directly using pre-trained models on Cifar10, CelebA and LSUN, PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup), significantly outperform DDIMs with 250 steps (by around 0.4 in FID) and have good generalization on different variance schedules. Our implementation is available at https://github.com/luping-liu/PNDM.