论文标题

预测全球月平均海面温度异常的深度学习模型

A Deep Learning Model for Forecasting Global Monthly Mean Sea Surface Temperature Anomalies

论文作者

Taylor, John, Feng, Ming

论文摘要

海面温度(SST)的变异性在全球天气和气候系统中起关键作用,诸如厄尔尼诺南方振荡之类的现象被视为全球尺度上年度气候变化的主要来源。能够对海面温度异常进行长期预测,尤其是与极端海洋热浪事件相关的预测,具有潜在的经济和社会利益。我们已经建立了一个深度学习时间序列预测模型(UNET-LSTM),该模型基于超过70年(1950-2021)的ECMWF ERA5每月平均海面温度和2米的空气温度数据。 UNET-LSTM模型能够学习驱动二维全球海面温度的时间演变的基本物理。该模型准确地预测了24个月内的海面温度,所有预测月份的均方根误差仍低于0.75 $^\ Circ $ c。我们还研究了该模型预测Niño3.4区域海面温度异常的能力,以及过去十年来许多海洋热波热点。 Niño3.4指数的模型预测使我们能够捕获强大的2010-11LaNiña,2009-10 El Nino和2015 - 16年的ElniñoTextremeElniño,最多可提前24个月。它还显示了东北太平洋海洋热浪斑点的长期潜在客户预测技能。但是,对印度洋东南海洋海洋热浪的预测,NingalooNiño,表现出有限的技能。这些结果表明,数据驱动方法的显着潜力是产生海面温度异常的长距离预测。

Sea surface temperature (SST) variability plays a key role in the global weather and climate system, with phenomena such as El Niño-Southern Oscillation regarded as a major source of interannual climate variability at the global scale. The ability to be able to make long-range forecasts of sea surface temperature anomalies, especially those associated with extreme marine heatwave events, has potentially significant economic and societal benefits. We have developed a deep learning time series prediction model (Unet-LSTM) based on more than 70 years (1950-2021) of ECMWF ERA5 monthly mean sea surface temperature and 2-metre air temperature data. The Unet-LSTM model is able to learn the underlying physics driving the temporal evolution of the 2-dimensional global sea surface temperatures. The model accurately predicts sea surface temperatures over a 24 month period with a root mean square error remaining below 0.75$^\circ$C for all predicted months. We have also investigated the ability of the model to predict sea surface temperature anomalies in the Niño3.4 region, as well as a number of marine heatwave hot spots over the past decade. Model predictions of the Niño3.4 index allow us to capture the strong 2010-11 La Niña, 2009-10 El Nino and the 2015-16 extreme El Niño up to 24 months in advance. It also shows long lead prediction skills for the northeast Pacific marine heatwave, the Blob. However, the prediction of the marine heatwaves in the southeast Indian Ocean, the Ningaloo Niño, shows limited skill. These results indicate the significant potential of data driven methods to yield long-range predictions of sea surface temperature anomalies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源