论文标题

量子多参数自适应贝叶斯估计和应用于超分辨率成像

Quantum Multi-Parameter Adaptive Bayesian Estimation and Application to Super-Resolution Imaging

论文作者

Lee, Kwan Kit, Gagatsos, Christos, Guha, Saikat, Ashok, Amit

论文摘要

在贝叶斯估计理论中,估计器$ {\hatθ} = e [θ| l] $达到最小平方误差(MMSE),用于估算通过噪声通道$ p_ {l |θ} $的$ l $从$ l $观察到$ l $ y $ l $ from $θ$的标量参数。在量子传感任务中,用户获取$ρ_θ$,该量子的编码$θ$。他们选择了一个测量值,一个正面值的测量值(POVM)$π_l$,它诱导通道$ p_ {l |θ} = {\ rm tr}(ρ_θπ_l)$用于测量结果$ l $,在该$上使用了Aforesical经典MMSE MMSE估算器。 Personick找到了最佳的POVM $π_l$,该$最小化了所有可能的测量值和MMSE的MMSE。 1971年的这一结果比量子渔民信息(QFI)还不太清楚,量子渔民信息(QFI)降低了无偏估计器在所有测量方面的差异,而当$p_θ$不可用时。对于多参数估计,即当$θ$是向量时,在Fisher量子估计理论中,QFI矩阵的倒数为操作员提供了对无偏估计器的协方差的下限。但是,对于{\ em贝叶斯}设置中的多参数量子估计,几乎没有量化量子限制和测量设计的工作。在本文中,我们以Personick的结果为基础,以构建贝叶斯自适应测量方案,以供多参数估计,当时$ρ_θ$可用。我们说明了将点发射器簇定位在高度亚雷利角视野中的应用,这是荧光显微镜和天文学中的重要问题。我们的算法在光子检测阵列之前转化为多空间模式转换,并带有电形反馈以适应模式分散器。我们表明,该接收器的性能优于量子噪声限制的焦距直接成像。

In Bayesian estimation theory, the estimator ${\hat θ} = E[θ|l]$ attains the minimum mean squared error (MMSE) for estimating a scalar parameter of interest $θ$ from the observation of $l$ through a noisy channel $P_{l|θ}$, given a prior $P_θ$ on $θ$. In quantum sensing tasks, the user gets $ρ_θ$, the quantum state that encodes $θ$. They choose a measurement, a positive-operator valued measure (POVM) $Π_l$, which induces the channel $P_{l|θ} = {\rm Tr}(ρ_θΠ_l)$ to the measurement outcome $l$, on which the aforesaid classical MMSE estimator is employed. Personick found the optimum POVM $Π_l$ that minimizes the MMSE over all possible measurements, and that MMSE. This result from 1971 is less-widely known than the quantum Fisher information (QFI), which lower bounds the variance of an unbiased estimator over all measurements, when $P_θ$ is unavailable. For multi-parameter estimation, i.e., when $θ$ is a vector, in Fisher quantum estimation theory, the inverse of the QFI matrix provides an operator lower bound to the covariance of an unbiased estimator. However, there has been little work on quantifying quantum limits and measurement designs, for multi-parameter quantum estimation in the {\em Bayesian} setting. In this paper, we build upon Personick's result to construct a Bayesian adaptive measurement scheme for multi-parameter estimation when $N$ copies of $ρ_θ$ are available. We illustrate an application to localizing a cluster of point emitters in a highly sub-Rayleigh angular field-of-view, an important problem in fluorescence microscopy and astronomy. Our algorithm translates to a multi-spatial-mode transformation prior to a photon-detection array, with electro-optic feedback to adapt the mode sorter. We show that this receiver performs far superior to quantum-noise-limited focal-plane direct imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源