论文标题

使用模仿学习的基于视觉的自主驾驶

Vision-based Autonomous Driving for Unstructured Environments Using Imitation Learning

论文作者

Ahn, Joonwoo, Kim, Minsoo, Park, Jaeheung

论文摘要

非结构化环境对于自动驾驶很困难。这是因为各种未知的障碍物都在没有车道的可驱动空间中,其宽度和曲率发生了广泛的变化。在如此复杂的环境中,很难实时寻找路径。同样,不准确的定位数据降低了路径跟踪准确性,从而增加了碰撞的风险。已经提出了一种替代方法,它没有搜索和跟踪路径,而是提出了一种反应避免实时障碍的替代方法。一些方法可用于跟踪全局路径,同时避免使用候选路径和人造潜在领域的障碍物。但是,这些方法需要启发式方法来查找处理各种复杂环境的特定参数。此外,由于本地化数据不准确,很难在实践中准确跟踪全局路径。如果无法准确识别可驱动的空间(即嘈杂的状态),则车辆可能不会平稳驾驶或可能会与障碍物相撞。在这项研究中,提出了一种仅使用基于视觉的占用网格图的车辆向可驱动空间驱动空间的方法。提出的方法使用模仿学习,其中深层神经网络接受了专家驾驶数据的培训。该网络可以学习适合各种复杂和嘈杂情况的驾驶模式,因为这些情况包含在培训数据中。实际停车场中使用车辆的实验证明了基于一般模型的方法的局限性以及所提出的模仿学习方法的有效性。

Unstructured environments are difficult for autonomous driving. This is because various unknown obstacles are lied in drivable space without lanes, and its width and curvature change widely. In such complex environments, searching for a path in real-time is difficult. Also, inaccurate localization data reduce the path tracking accuracy, increasing the risk of collision. Instead of searching and tracking the path, an alternative approach has been proposed that reactively avoids obstacles in real-time. Some methods are available for tracking global path while avoiding obstacles using the candidate paths and the artificial potential field. However, these methods require heuristics to find specific parameters for handling various complex environments. In addition, it is difficult to track the global path accurately in practice because of inaccurate localization data. If the drivable space is not accurately recognized (i.e., noisy state), the vehicle may not smoothly drive or may collide with obstacles. In this study, a method in which the vehicle drives toward drivable space only using a vision-based occupancy grid map is proposed. The proposed method uses imitation learning, where a deep neural network is trained with expert driving data. The network can learn driving patterns suited for various complex and noisy situations because these situations are contained in the training data. Experiments with a vehicle in actual parking lots demonstrated the limitations of general model-based methods and the effectiveness of the proposed imitation learning method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源