论文标题

$ ldl^{t} $分解的公式,用于最小的I类型机制和$ CP $对称的条件在任意的基础上

A formula by $LDL^{T}$ decomposition for the minimal type-I seesaw mechanism and conditions of $CP$ symmetry in an arbitrary basis

论文作者

Yang, Masaki J. S.

论文摘要

在本文中,通过$ ldl^{t} $分解为最小的I Seesaw机制定义一个公式,我们在任意的基础上获得了中微子质量矩阵$ m $的$ CP $对称条件。发现条件为$ {\ rm re \,}(m_ {22} a_ {i} - m_ {12} b_ {i})\,{\ rm im \,}(m_ {22} a_ {j} a_ {j} a { b_ {i} \,{\ rm im \,} b_ {j} $或$ = - \ det m \,{\ rm im \,} b_ {i} \,{\ rm re \ \ \ rm re \,} b_ {j} $ b_ {j})$和右撇子中微子质量矩阵$ m_ {ij} $。换句话说,$ b_ {i} $的真实或虚构部分必须与数量$(m_ {22} a_ {i} -m_ {12} b_ {i})$成比例。

In this paper, defining a formula by $LDL^{T}$ decomposition for the minimal type-I seesaw mechanism, we obtain conditions of $CP$ symmetry for the neutrino mass matrix $m$ in an arbitrary basis. The conditions are found to be ${\rm Re\,} (M_{22} a_{i} - M_{12} b_{i}) \, {\rm Im \,} ( M_{22} a_{j} - M_{12} b_{j}) = - \det M \, {\rm Re\,} b_{i} \, {\rm Im \,} b_{j}$ or $ = - \det M \, {\rm Im \,} b_{i} \, {\rm Re\,} b_{j}$ for the Yukawa matrix $Y_{ij} = (a_{j}, b_{j})$ and the right-handed neutrino mass matrix $M_{ij}$. In other words, the real or imaginary part of $b_{i}$ must be proportional to the real or imaginary part of the quantity $(M_{22} a_{i} - M_{12} b_{i})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源