论文标题

三维可压缩粘性微极和热传导流体的全球适应性,无穷大和大振荡

Global well-posedness for three-dimensional compressible viscous micropolar and heat-conducting fluids with vacuum at infinity and large oscillations

论文作者

Liu, Yang, Zhong, Xin

论文摘要

我们研究了三维可压缩粘性和热传导的微极流体方程的全球适应性,无限密度为零。通过精致的能量估计,我们仅根据系统和初始质量出现的参数建立了在某些较小的条件下的全球存在和强溶液的独特性。特别是,初始质量可以任意大。这改善了我们以前的工作[23]。此外,我们还将结果[13]推广到无穷大允许真空的情况下。

We investigate global well-posedness to the Cauchy problem of three-dimensional compressible viscous and heat-conducting micropolar fluid equations with zero density at infinity. By delicate energy estimates, we establish global existence and uniqueness of strong solutions under some smallness condition depending only on the parameters appeared in the system and the initial mass. In particular, the initial mass can be arbitrarily large. This improves our previous work [23]. Moreover, we also generalize the result [13] to the case that vacuum is allowed at infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源