论文标题

VRCONVMF:电影推荐的视觉循环卷积矩阵分解

VRConvMF: Visual Recurrent Convolutional Matrix Factorization for Movie Recommendation

论文作者

Wang, Zhu, Chen, Honglong, Li, Zhe, Lin, Kai, Jiang, Nan, Xia, Feng

论文摘要

用户到项目评级数据的稀疏性成为推荐系统中具有挑战性的问题之一,这严重恶化了建议性能。幸运的是,上下文感知的推荐系统可以通过使用一些辅助信息,例如用户和项目的信息来减轻稀疏问题。特别是,可以将项目的视觉信息(例如电影海报)视为项目描述文档的补充,这有助于获得更多的项目功能。在本文中,我们专注于电影推荐系统,并提出了一种概率矩阵分解的建议方案,称为视觉复发卷积矩阵分解(VRCONVMF),该方案分别利用了从描述性文本和海报中提取的文本和多级别视觉特征。我们实施了建议的VRCONVMF,并对三个常用的现实世界数据集进行了广泛的实验,以验证其有效性。实验结果表明,所提出的VRCONVMF优于现有方案。

Sparsity of user-to-item rating data becomes one of challenging issues in the recommender systems, which severely deteriorates the recommendation performance. Fortunately, context-aware recommender systems can alleviate the sparsity problem by making use of some auxiliary information, such as the information of both the users and items. In particular, the visual information of items, such as the movie poster, can be considered as the supplement for item description documents, which helps to obtain more item features. In this paper, we focus on movie recommender system and propose a probabilistic matrix factorization based recommendation scheme called visual recurrent convolutional matrix factorization (VRConvMF), which utilizes the textual and multi-level visual features extracted from the descriptive texts and posters respectively. We implement the proposed VRConvMF and conduct extensive experiments on three commonly used real world datasets to validate its effectiveness. The experimental results illustrate that the proposed VRConvMF outperforms the existing schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源