论文标题

多极杆的连续体中的绑定状态

Bound States in the Continuum in Multipolar Lattices

论文作者

Gladyshev, Sergei, Shalev, Artem, Frizyuk, Kristina, Ladutenko, Konstantin, Bogdanov, Andrey

论文摘要

我们在多极杆子中的连续体(BIC)中发展了一个结合状态的理论 - 谐振多物的周期性阵列。我们预测,BIC对固定在$ k $ -space中的特定方向的晶格参数的变化完全可靠。这种结构中BIC缺乏辐射受到形成晶格的多物的对称性的保护。我们还表明,一些多极杆可以托管BIC,在$ K $空间中形成连续线,而这种BIC则带有零拓扑费。开发的方法建立了BIC拓扑电荷与Q因子在其附近的渐近行为之间的直接基本关系。我们认为,我们的理论是对BIC的物理学和高Q国家在全dilectric MetaSurfaces中的物理和工程的更深入了解的重要一步。

We develop a theory of bound states in the continuum (BICs) in multipolar lattices -- periodic arrays of resonant multipoles. We predict that BICs are completely robust to changes in lattice parameters remaining pinned to specific directions in the $k$-space. The lack of radiation for BICs in such structures is protected by the symmetry of multipoles forming the lattice. We also show that some multipolar lattices can host BICs forming a continuous line in the $k$-space and such BICs carry zero topological charge. The developed approach sets a direct fundamental relation between the topological charge of BIC and the asymptotic behavior of the Q-factor in its vicinity. We believe that our theory is a significant step towards gaining deeper insight into the physics of BICs and the engineering of high-Q states in all-dielectric metasurfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源