论文标题
一般线性时间延迟系统的控制:Kronecker-Seuret分解的应用
Control of General Linear Time-Delay Systems: Applications of the Kronecker-Seuret Decomposition
论文作者
论文摘要
稳定自主线性时间延迟系统,尤其是在解决耗散限制的无限数量和分布式延迟(DDS)时,构成了重大挑战。现有的解决方案通常受到理论局限性,数值障碍或无法解决延迟整体内核的复杂性的阻碍。在本文中,我们提出了一个统一的框架来解决上述问题,通过采用矩阵值函数的kronecker-Seuret分解(KSD)概念,我们最近开发了与Krasovski \Uı函数方法协调的复杂延迟结构的分析。我们的策略可以同时解决两个不同的控制问题,其中DDS的矩阵内核可以包含无限数量的平方积分功能。我们详细介绍了KSD如何同时分解和近似不同的内核函数,而无需引入保守主义。此外,KSD的使用还使我们能够构建完整的型功能,其积分内核可以包括任何数量的弱微分和线性独立函数,这是由于最小千分之一的原理得出的新型积分不平等的基础所基于的。每个合成问题的解决方案包括两个定理,并附有迭代算法,可以用作单个软件包来计算控制器的收益,从而消除了对非线性求解器的需求。我们提供了两个具有挑战性的例子的测试结果,这些示例无法通过现有方法来解决,以证明我们方法的有效性。此外,本文回顾了时间延迟系统研究中的最新进展,为新兴研究人员和已建立的研究人员提供了宝贵的参考。
Stabilizing autonomous linear time delay systems, particularly when addressing an unlimited number of pointwise and distributed delays (DDs) under dissipative constraints, poses a significant challenge. Existing solutions are often hindered by theoretical limitations, numerical obstacles, or an inability to address the complexities of the delay integral kernels. In this paper, we propose a unified framework to tackle the above problem by employing the concept of the Kronecker-Seuret decomposition (KSD) for matrix-valued functions, which we recently have developed for the analysis of complex delay structures in coordination with the Krasovski\uı functional approach. Our strategy can simultaneously address two distinct control problems, where the matrix kernels of DDs can contain an unlimited number of square-integrable functions. We show in detail how the KSD can factorize and approximate different kernel functions simultaneously without introducing conservatism. Furthermore, the use of KSD also enables us to construct complete-type functionals, whose integral kernels can include any number of weakly differentiable and linearly independent functions, underpinned by the utilization of novel integral inequalities derived from the least-squares principle. The solution to each synthesis problem comprises two theorems accompanied by an iterative algorithm, which can be utilized as a single package to compute controller gains, thus eliminating the need for nonlinear solvers. We present the testing results of two challenging examples, which could not be addressed by existing methods, to demonstrate the effectiveness of our methodology. Additionally, the paper reviews recent advancements in the research of time-delay systems, providing a valuable reference for both emerging and established researchers.