论文标题

量化抽样下图流中时间基序估计的不确定性

Quantifying Uncertainty for Temporal Motif Estimation in Graph Streams under Sampling

论文作者

Zhu, Xiaojing, Kolaczyk, Eric D.

论文摘要

动态网络,又称图形流,由一组顶点和顶点之间的时间戳交互事件(即时间边缘)组成。时间基序被定义为(小)同构诱导的图在图流中的类别,考虑到边缘排序和持续时间。与静态网络中的主题一样,时间基序是动态网络中时间结构的基本构建块。已经设计了几种方法来计算图流中的时间基序的发生,最近的工作着重于估计各种采样方案下的计数以及浓度属性。但是,对于此类计数估计器的不确定性定量问题和渐近统计特性,很少关注。在这项工作中,我们在边缘采样框架中建立了某些Horvitz-Thompson类型的估计量的一致性和渐近正态性,用于确定性图流,可用于构建置信区间并在抽样下进行时间基序计数的假设测试。我们还在类似的随机模型下建立了相似的结果。我们的结果与涉及模式发现的任务中的社会,交流,生物学和大脑网络中的广泛应用有关。

Dynamic networks, a.k.a. graph streams, consist of a set of vertices and a collection of timestamped interaction events (i.e., temporal edges) between vertices. Temporal motifs are defined as classes of (small) isomorphic induced subgraphs on graph streams, considering both edge ordering and duration. As with motifs in static networks, temporal motifs are the fundamental building blocks for temporal structures in dynamic networks. Several methods have been designed to count the occurrences of temporal motifs in graph streams, with recent work focusing on estimating the count under various sampling schemes along with concentration properties. However, little attention has been given to the problem of uncertainty quantification and the asymptotic statistical properties for such count estimators. In this work, we establish the consistency and the asymptotic normality of a certain Horvitz-Thompson type of estimator in an edge sampling framework for deterministic graph streams, which can be used to construct confidence intervals and conduct hypothesis testing for the temporal motif count under sampling. We also establish similar results under an analogous stochastic model. Our results are relevant to a wide range of applications in social, communication, biological, and brain networks, for tasks involving pattern discovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源