论文标题

圆形包装和理想班级组的几何研究

A geometric study of circle packings and ideal class groups

论文作者

Martin, Daniel

论文摘要

为每个虚构的二次场$ k $介绍了一个圆圈的分形系列。总的来说,这些布置包含(直至仿射变换)具有积分曲线和Zariski致密对称组的扩展复合平面中的每组圆。当该集合是一个圆形填料时,我们会展示安排的环境结构如何提供几何标准,以满足几乎局部的全球原理。还探索了与$ K $的类的连接。其中的几何特性保证某些理想类是组发电机。

A family of fractal arrangements of circles is introduced for each imaginary quadratic field $K$. Collectively, these arrangements contain (up to an affine transformation) every set of circles in the extended complex plane with integral curvatures and Zariski dense symmetry group. When that set is a circle packing, we show how the ambient structure of our arrangement gives a geometric criterion for satisfying the almost local-global principle. Connections to the class group of $K$ are also explored. Among them is a geometric property that guarantees certain ideal classes are group generators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源