论文标题
无数:一个现实世界的测试台,用于桥接轨迹优化和深度学习
Myriad: a real-world testbed to bridge trajectory optimization and deep learning
论文作者
论文摘要
我们介绍了无数,这是一个用JAX编写的测试台,用于在现实世界中的连续环境中学习和计划。无数的主要贡献是三倍。首先,Myriad为机器学习实践者提供了典型自动分化工作流程中应用轨迹优化技术的访问。其次,无数提出了许多现实世界中的最佳控制问题,从生物学到医学再到工程,以供机器学习社区使用。这些环境在连续的空间和时间上配制,保留了经常被标准基准测试的现实世界系统的一些复杂性。因此,无数努力将现代机器学习技术应用于有影响力的现实世界任务的应用。最后,我们使用无数存储库来展示一种学习和控制任务的新方法。我们的模型以完全端到端的方式进行了培训,利用了一个隐含的计划模块,而不是神经普通微分方程,从而可以通过复杂的环境动态进行同时学习和计划。
We present Myriad, a testbed written in JAX for learning and planning in real-world continuous environments. The primary contributions of Myriad are threefold. First, Myriad provides machine learning practitioners access to trajectory optimization techniques for application within a typical automatic differentiation workflow. Second, Myriad presents many real-world optimal control problems, ranging from biology to medicine to engineering, for use by the machine learning community. Formulated in continuous space and time, these environments retain some of the complexity of real-world systems often abstracted away by standard benchmarks. As such, Myriad strives to serve as a stepping stone towards application of modern machine learning techniques for impactful real-world tasks. Finally, we use the Myriad repository to showcase a novel approach for learning and control tasks. Trained in a fully end-to-end fashion, our model leverages an implicit planning module over neural ordinary differential equations, enabling simultaneous learning and planning with complex environment dynamics.