论文标题
相互作用的相互作用的相位随机量子流体动力学
Phase-space stochastic quantum hydrodynamics for interacting Bose gases
论文作者
论文摘要
流体动力学理论提供了成功的方法,能够模拟量子多体系统的原本难以发电动力学。在这项工作中,我们在正-P相位形式主义中得出了一种新的随机流体动力学方法,用于描述相互作用的bose气体。它超越了现有的流体动力学方法,例如超流体流体动力学或广义流体动力学,其能力模拟了这些系统的完整量子动力学:即使对于短波长现象,它也具有计算非平衡量子相关性的能力。使用此描述,我们得出了一个线性化的随机流体动力方案,该方案能够比完整的正P方法更长的时间模拟这种非平衡情况,但以依靠近似量子波动的处理,并表明该线性化方案可以与现有的Bogoliubov方法直接连接。此外,我们继续通过探索在量子冲击波情景中出现的相关性,并将其预测与其他已建立的量子多体型方法进行比较,以证明这种形式主义的有用性和优势。
Hydrodynamic theories offer successful approaches that are capable of simulating the otherwise difficult-to-compute dynamics of quantum many-body systems. In this work we derive, within the positive-P phase-space formalism, a new stochastic hydrodynamic method for the description of interacting Bose gases. It goes beyond existing hydrodynamic approaches, such as superfluid hydrodynamics or generalized hydrodynamics, in its capacity to simulate the full quantum dynamics of these systems: it possesses the ability to compute non-equilibrium quantum correlations, even for short-wavelength phenomena. Using this description, we derive a linearized stochastic hydrodynamic scheme which is able to simulate such non-equilibrium situations for longer times than the full positive-P approach, at the expense of approximating the treatment of quantum fluctuations, and show that this linearized scheme can be directly connected with existing Bogoliubov approaches. Furthermore, we go on to demonstrate the usefulness and advantages of this formalism by exploring the correlations that arise in a quantum shock wave scenario and comparing its predictions to other established quantum many-body approaches.