论文标题

用于边界治疗效果的随机因果编程

Stochastic Causal Programming for Bounding Treatment Effects

论文作者

Padh, Kirtan, Zeitler, Jakob, Watson, David, Kusner, Matt, Silva, Ricardo, Kilbertus, Niki

论文摘要

因果效应估计对于自然和社会科学中的许多任务很重要。我们为连续的部分识别问题设计算法:在未衡量的混淆时,界定多变量,连续处理的效果,使识别不可能。具体而言,我们在约束优化问题中将因果效应作为目标函数,并最大程度地减少/最大化这些功能以获得界限。我们将灵活的学习算法与蒙特卡洛方法相结合,以随机因果节目的名义实施一个解决方案。特别是,我们展示了如何在将辅助变量聚集到预处理和处理后集的设置中有效地配制了通用框架,在这些设置中,没有易于指定细粒度的因果图。在这些情况下,我们可以避免需要完全指定隐藏共同原因的分布家族。蒙特卡洛计算也得到了大量简化,导致算法在替代方案上更稳定。

Causal effect estimation is important for many tasks in the natural and social sciences. We design algorithms for the continuous partial identification problem: bounding the effects of multivariate, continuous treatments when unmeasured confounding makes identification impossible. Specifically, we cast causal effects as objective functions within a constrained optimization problem, and minimize/maximize these functions to obtain bounds. We combine flexible learning algorithms with Monte Carlo methods to implement a family of solutions under the name of stochastic causal programming. In particular, we show how the generic framework can be efficiently formulated in settings where auxiliary variables are clustered into pre-treatment and post-treatment sets, where no fine-grained causal graph can be easily specified. In these settings, we can avoid the need for fully specifying the distribution family of hidden common causes. Monte Carlo computation is also much simplified, leading to algorithms which are more computationally stable against alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源