论文标题

声音对抗性音频导航

Sound Adversarial Audio-Visual Navigation

论文作者

Yu, Yinfeng, Huang, Wenbing, Sun, Fuchun, Chen, Changan, Wang, Yikai, Liu, Xiaohong

论文摘要

视听导航任务要求代理通过利用以自我为中心的音频观察来在现实的,未占有的3D环境中找到声源。现有的视听导航作品假设一个完全包含目标声音的清洁环境,但是由于意外的声音噪声或故意干扰,这在大多数现实世界中都不适合。在这项工作中,我们设计了一个声学上复杂的环境,除了目标声音外,还有一个声音攻击者与代理商一起玩零和游戏。更具体地说,攻击者可以移动和更改声音的音量和类别,以使代理商在特工试图躲避攻击并在干预下导航到目标时,使代理人遭受寻找声音对象的痛苦。在对攻击者的某些限制下,我们可以提高代理商对视听导航中意外声音攻击的鲁棒性。为了更好地收敛,我们通过使用分散的参与者的集中评论家的财产来开发联合培训机制。在转移到干净的环境或包含随机策略的一个随机攻击者时,对两个现实世界3D扫描数据集(副本和Matterport3D)进行了实验,验证了在我们设计的环境下训练的代理的有效性和鲁棒性。项目:\ url {https://yyf17.github.io/saavn}。

Audio-visual navigation task requires an agent to find a sound source in a realistic, unmapped 3D environment by utilizing egocentric audio-visual observations. Existing audio-visual navigation works assume a clean environment that solely contains the target sound, which, however, would not be suitable in most real-world applications due to the unexpected sound noise or intentional interference. In this work, we design an acoustically complex environment in which, besides the target sound, there exists a sound attacker playing a zero-sum game with the agent. More specifically, the attacker can move and change the volume and category of the sound to make the agent suffer from finding the sounding object while the agent tries to dodge the attack and navigate to the goal under the intervention. Under certain constraints to the attacker, we can improve the robustness of the agent towards unexpected sound attacks in audio-visual navigation. For better convergence, we develop a joint training mechanism by employing the property of a centralized critic with decentralized actors. Experiments on two real-world 3D scan datasets, Replica, and Matterport3D, verify the effectiveness and the robustness of the agent trained under our designed environment when transferred to the clean environment or the one containing sound attackers with random policy. Project: \url{https://yyf17.github.io/SAAVN}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源