论文标题

端到端的预测,然后优化聚类方法,用于明确系统中的智能分配问题

An end-to-end predict-then-optimize clustering method for intelligent assignment problems in express systems

论文作者

Zhang, Jinlei, Shan, Ergang, Wu, Lixia, Yang, Lixing, Gao, Ziyou, Hu, Haoyuan

论文摘要

Express系统在现代主要城市中扮演重要角色。在特定时间内,为特定领域(AOI)的Express系统提供服务的快递员。但是,随着时间的流逝,未来的接送请求差异很大。虽然分配结果通常是静态的,而不会随着时间而变化。因此,使用历史拾取请求编号来进行快递的AOI分配(或接送请求分配)是不合理的。此外,即使我们也可以首先预测未来的接送请求,然后使用预测结果进行作业,这种两阶段的方法也是不切实际且琐碎的,并且存在一些缺点,例如最佳预测结果可能无法确保最佳的聚类结果。为了解决这些问题,我们提出了一种智能的端到端预测,然后优化聚类方法,以同时预测AOI的未来接收请求,并通过聚类将AOIS分配给AREIRS。首先,我们提出了一个基于深度学习的预测模型,以预测AOIS上的订单数字。然后根据预测结果将差异约束的K-均值聚类方法引入群集AOI。我们最终提出了一种一阶段的端到端预测,然后优化聚类方法,以合理,动态和聪明地将AOI分配给快递员。结果表明,这种单阶段预测,然后优化方法有益于提高优化结果的性能,即聚类结果。这项研究可以为预测相关任务和明确系统中的智能任务问题提供批判性经验。

Express systems play important roles in modern major cities. Couriers serving for the express system pick up packages in certain areas of interest (AOI) during a specific time. However, future pick-up requests vary significantly with time. While the assignment results are generally static without changing with time. Using the historical pick-up request number to conduct AOI assignment (or pick-up request assignment) for couriers is thus unreasonable. Moreover, even we can first predict future pick-up requests and then use the prediction results to conduct the assignments, this kind of two-stage method is also impractical and trivial, and exists some drawbacks, such as the best prediction results might not ensure the best clustering results. To solve these problems, we put forward an intelligent end-to-end predict-then-optimize clustering method to simultaneously predict the future pick-up requests of AOIs and assign AOIs to couriers by clustering. At first, we propose a deep learning-based prediction model to predict order numbers on AOIs. Then a differential constrained K-means clustering method is introduced to cluster AOIs based on the prediction results. We finally propose a one-stage end-to-end predict-then-optimize clustering method to assign AOIs to couriers reasonably, dynamically, and intelligently. Results show that this kind of one-stage predict-then-optimize method is beneficial to improve the performance of optimization results, namely the clustering results. This study can provide critical experiences for predict-and-optimize related tasks and intelligent assignment problems in express systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源