论文标题

单腿收入管理和建议

Single-Leg Revenue Management with Advice

论文作者

Balseiro, Santiago, Kroer, Christian, Kumar, Rachitesh

论文摘要

单腿收入管理是一个基本的收入管理问题,在航空公司和酒店行业中特别影响:鉴于资源的$ n $单位,例如飞行座位以及一系列依次的客户票价分割的序列座位,分配资源的最佳在线政策是什么?以前的工作着重于设计算法时,当可用预测时,预测中的不准确性或具有最差案例性能保证的在线算法并不强大,这在实际上可能太保守了。在这项工作中,我们通过算法(包括奖励框架)的镜头来研究单腿收入管理问题,该算法通过将有关未来的建议最佳地纳入在线算法中,试图利用机器学习方法的越来越多的预测准确性。特别是,我们表征了帕累托边境,该边界捕捉了一致性(建议是准确的绩效)和竞争力(在建议不准确时表现)之间的权衡。此外,我们提供了一种在线算法,该算法始终在此Pareto边境上实现性能。我们还研究了保护水平政策的类别,这是单腿收入管理最广泛部署的技术:我们提供了一种算法,将建议纳入保护水平,以最佳的方式进行一致性和竞争力。此外,我们从经验上评估了这些算法在合成数据上的性能。我们发现,在大多数情况下,我们的保护水平政策的算法表现出色,即使在理论上不能保证在帕累托前沿。我们的结果扩展到其他单位成本分配问题,例如展示广告和多重秘书问题,以及更一般的可变成本问题,例如在线背包问题。

Single-leg revenue management is a foundational problem of revenue management that has been particularly impactful in the airline and hotel industry: Given $n$ units of a resource, e.g. flight seats, and a stream of sequentially-arriving customers segmented by fares, what is the optimal online policy for allocating the resource. Previous work focused on designing algorithms when forecasts are available, which are not robust to inaccuracies in the forecast, or online algorithms with worst-case performance guarantees, which can be too conservative in practice. In this work, we look at the single-leg revenue management problem through the lens of the algorithms-with-advice framework, which attempts to harness the increasing prediction accuracy of machine learning methods by optimally incorporating advice about the future into online algorithms. In particular, we characterize the Pareto frontier that captures the tradeoff between consistency (performance when advice is accurate) and competitiveness (performance when advice is inaccurate) for every advice. Moreover, we provide an online algorithm that always achieves performance on this Pareto frontier. We also study the class of protection level policies, which is the most widely-deployed technique for single-leg revenue management: we provide an algorithm to incorporate advice into protection levels that optimally trades off consistency and competitiveness. Moreover, we empirically evaluate the performance of these algorithms on synthetic data. We find that our algorithm for protection level policies performs remarkably well on most instances, even if it is not guaranteed to be on the Pareto frontier in theory. Our results extend to other unit-cost online allocations problems such as the display advertising and the multiple secretary problem together with more general variable-cost problems such as the online knapsack problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源