论文标题

通过增强生成模型来发现材料微观结构优化的机制

Discovering mechanisms for materials microstructure optimization via reinforcement learning of a generative model

论文作者

Vasudevan, Rama K., Orozco, Erick, Kalinin, Sergei V.

论文摘要

用于优化功能特性的材料结构的设计,并可能发现新型行为的发现是材料科学中的基石问题。在许多情况下,基于材料功能的微观结构模型可用且知识良好。但是,通过微观结构工程对平均特性的优化通常会导致结合棘手的问题。在这里,我们探索了对钢筋学习(RL)的使用用于微观结构优化,以发现增强功能背后的物理机制。我们说明RL可以提供有关在2D离散Landau Ferroelectrics模拟器中驱动感兴趣的机制的见解。有趣的是,如果分配了奖励有利于物理上不可能的任务,我们发现非平凡现象会出现,我们通过奖励RL代理将极化向量旋转到能量不利的位置来说明。我们进一步发现,基于对学术代理策略的分析,诱导极化卷曲的策略可能是非直觉的。这项研究表明,RL是一种用于材料设计优化任务的有前途的机器学习方法,并可以更好地理解微观结构模拟的动态。

The design of materials structure for optimizing functional properties and potentially, the discovery of novel behaviors is a keystone problem in materials science. In many cases microstructural models underpinning materials functionality are available and well understood. However, optimization of average properties via microstructural engineering often leads to combinatorically intractable problems. Here, we explore the use of the reinforcement learning (RL) for microstructure optimization targeting the discovery of the physical mechanisms behind enhanced functionalities. We illustrate that RL can provide insights into the mechanisms driving properties of interest in a 2D discrete Landau ferroelectrics simulator. Intriguingly, we find that non-trivial phenomena emerge if the rewards are assigned to favor physically impossible tasks, which we illustrate through rewarding RL agents to rotate polarization vectors to energetically unfavorable positions. We further find that strategies to induce polarization curl can be non-intuitive, based on analysis of learned agent policies. This study suggests that RL is a promising machine learning method for material design optimization tasks, and for better understanding the dynamics of microstructural simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源