论文标题

Minimax对部分监测感到遗憾:无限结果和Rustichini的遗憾

Minimax Regret for Partial Monitoring: Infinite Outcomes and Rustichini's Regret

论文作者

Lattimore, Tor

论文摘要

我们表明,Lattimore和Gyorgy(2020)的广义信息比例的版本决定了所有有限行动部分监测游戏的渐近minimax遗憾,前提是(a)(a)使用后悔的标准定义,但使用了对手游戏潜在无限的潜在空间;或(b)使用Rustichini(1999)引入的遗憾,潜在空间是有限的。我们的结果得到了许多例子的补充。对于[1/2,1] $中的任何$ p \,存在一个无限的部分监测游戏,在该游戏中,Minimax遗憾的是$ n $ grounds $ n^p $ to subsolynomial因素,并且存在有限的游戏,Minimax Rustichini遗憾的是$ n^{4/7} $ to to polynomial suppolynomial ripynomial因素。

We show that a version of the generalised information ratio of Lattimore and Gyorgy (2020) determines the asymptotic minimax regret for all finite-action partial monitoring games provided that (a) the standard definition of regret is used but the latent space where the adversary plays is potentially infinite; or (b) the regret introduced by Rustichini (1999) is used and the latent space is finite. Our results are complemented by a number of examples. For any $p \in [1/2,1]$ there exists an infinite partial monitoring game for which the minimax regret over $n$ rounds is $n^p$ up to subpolynomial factors and there exist finite games for which the minimax Rustichini regret is $n^{4/7}$ up to subpolynomial factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源