论文标题

从微观动力学中了解二氧化硅中的脆弱到肌肉过渡

Understanding the fragile-to-strong transition in silica from microscopic dynamics

论文作者

Yu, Zheng, Morgan, Dane, Ediger, M. D., Wang, Bu

论文摘要

在这项工作中,我们从微观动力学的角度重新审视了模拟BKS二氧化硅中的脆弱到肌肉转变(FTS),以阐明脆弱和强玻璃形成液体的动力学行为。柔软度是来自局部原子结构的机器学习特征,用于预测微观激活能量和长期动力学。发现FTS源自微观激活能量学温度依赖性的变化。此外,结果表明在BKS二氧化硅中有两个扩散通道。高温下的快速动力学以小型能屏障($ <\ sim $ 1 eV)为主导,该通道由短期顺序控制。当降低温度时,这种扩散通道的快速关闭导致脆弱的行为。另一方面,低温下的缓慢动力学由通道主导,其中大型能屏障由中等顺序控制。这种缓慢的扩散通道仅随温度而巧妙地变化,从而导致强烈的行为。两个通道中屏障的分布显示出不同的温度依赖性,导致$ \ sim $ 3100 k的交叉。微观动力学中的这种过渡温度与构型熵的拐点一致,这表明微观动力学和热力学之间存在基本相关性。

In this work, we revisit the fragile-to-strong transition (FTS) in the simulated BKS silica from the perspective of microscopic dynamics in an effort to elucidate the dynamical behaviors of fragile and strong glass-forming liquids. Softness, which is a machine-learned feature from local atomic structures, is used to predict the microscopic activation energetics and long-term dynamics. The FTS is found to originate from a change in the temperature dependence of the microscopic activation energetics. Furthermore, results suggest there are two diffusion channels with different energy barriers in BKS silica. The fast dynamics at high temperatures is dominated by the channel with small energy barriers ($<\sim$1 eV), which is controlled by the short-range order. The rapid closing of this diffusion channel when lowering temperature leads to the fragile behavior. On the other hand, the slow dynamics at low temperatures is dominated by the channel with large energy barriers controlled by the medium-range order. This slow diffusion channel changes only subtly with temperature, leading to the strong behavior. The distributions of barriers in the two channels show different temperature dependences, causing a crossover at $\sim$3100 K. This transition temperature in microscopic dynamics is consistent with the inflection point in the configurational entropy, suggesting there is a fundamental correlation between microscopic dynamics and thermodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源