论文标题

通过生成对抗网络生成合成移动网络

Generating Synthetic Mobility Networks with Generative Adversarial Networks

论文作者

Mauro, Giovanni, Luca, Massimiliano, Longa, Antonio, Lepri, Bruno, Pappalardo, Luca

论文摘要

人类流离失所在复杂的社会现象中越来越重要的作用,例如交通拥堵,种族隔离和流行病的扩散,吸引了科学家从几个学科中的利益。在本文中,我们解决了移动网络的生成,即产生城市的整个移动网络,这是一个加权的有向图,其中节点是地理位置,加权边缘代表人们在这些位置之间的运动,从而描述了整个城市中的整个移动性集。我们的解决方案是Mogan,Mogan是一种基于生成对抗网络(GAN)的模型,以生成逼真的移动性网络。我们在自行车和出租车的公共数据集上进行了广泛的实验,以表明Mogan在生成网络的现实主义方面优于经典的重力和辐射模型。我们的模型可用于数据增强和执行模拟和何种分析。

The increasingly crucial role of human displacements in complex societal phenomena, such as traffic congestion, segregation, and the diffusion of epidemics, is attracting the interest of scientists from several disciplines. In this article, we address mobility network generation, i.e., generating a city's entire mobility network, a weighted directed graph in which nodes are geographic locations and weighted edges represent people's movements between those locations, thus describing the entire mobility set flows within a city. Our solution is MoGAN, a model based on Generative Adversarial Networks (GANs) to generate realistic mobility networks. We conduct extensive experiments on public datasets of bike and taxi rides to show that MoGAN outperforms the classical Gravity and Radiation models regarding the realism of the generated networks. Our model can be used for data augmentation and performing simulations and what-if analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源