论文标题

多变量分位数预测器

Multivariate Quantile Function Forecaster

论文作者

Kan, Kelvin, Aubet, François-Xavier, Januschowski, Tim, Park, Youngsuk, Benidis, Konstantinos, Ruthotto, Lars, Gasthaus, Jan

论文摘要

我们提出了多元分位数函数预测器(MQF $^2 $),这是一种使用多元分位数函数构建的全局概率预测方法,并研究了其在多类预测中的应用。先前的方法是自动回归,可以隐含地捕获跨时间的依赖性结构,但会随着预测范围的增加而表现出误差积累,或者表现出多丙烯序列序列到序列模型,这些模型不会表现出误差积累,但通常不是在跨时间步骤中建模依赖关系结构。 MQF $^2 $结合了两种方法的好处,通过直接以多元分位数函数的形式进行预测,该预测定义为凸函数的梯度,我们使用Input-Convex神经网络参数化。根据设计,分位数功能相对于输入分位数是单调的,因此避免了分位数交叉。我们提供了两种培训MQF $^2 $的选项:具有能量得分或最大可能性。关于现实世界和合成数据集的实验结果表明,我们的模型在单个时间步长指标方面具有可比的性能,同时捕获时间依赖性结构。

We propose Multivariate Quantile Function Forecaster (MQF$^2$), a global probabilistic forecasting method constructed using a multivariate quantile function and investigate its application to multi-horizon forecasting. Prior approaches are either autoregressive, implicitly capturing the dependency structure across time but exhibiting error accumulation with increasing forecast horizons, or multi-horizon sequence-to-sequence models, which do not exhibit error accumulation, but also do typically not model the dependency structure across time steps. MQF$^2$ combines the benefits of both approaches, by directly making predictions in the form of a multivariate quantile function, defined as the gradient of a convex function which we parametrize using input-convex neural networks. By design, the quantile function is monotone with respect to the input quantile levels and hence avoids quantile crossing. We provide two options to train MQF$^2$: with energy score or with maximum likelihood. Experimental results on real-world and synthetic datasets show that our model has comparable performance with state-of-the-art methods in terms of single time step metrics while capturing the time dependency structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源