论文标题
深度度量学习的半监督回归与替代学习
Deep Metric Learning-Based Semi-Supervised Regression With Alternate Learning
论文作者
论文摘要
本文引入了一种基于深度度量的半监督回归(DML-S2R)方法,以解决参数估计问题。提出的DML-S2R方法旨在减轻不足的标记样品问题,而无需收集任何具有目标值的其他样本。为此,它由两个主要步骤组成:i)具有稀缺标记的数据的成对相似性建模; ii)基于三胞胎的公制学习,并具有丰富的未标记数据。第一步旨在通过使用少量标记的样品对成对样品相似性进行建模。这是通过估计具有暹罗神经网络(SNN)标记样品的目标值差异来实现的。第二步旨在学习一个基于三重列车的度量空间(其中相似的样品彼此接近,并且相似的样本彼此相距遥远),当时标记的样品数量不足。这是通过采用第一步的SNN来实现的,用于基于三重态的深度度量学习,不仅利用了标记的样本,还可以利用未标记的样本。对于DML-S2R的端到端培训,我们研究了这两个步骤的替代学习策略。由于这种策略,每个步骤中的编码信息成为另一个步骤学习阶段的指导。实验结果证实了DML-S2R与最先进的半监督回归方法相比的成功。该方法的代码可在https://git.tu-berlin.de/rsim/dml-s2r上公开获得。
This paper introduces a novel deep metric learning-based semi-supervised regression (DML-S2R) method for parameter estimation problems. The proposed DML-S2R method aims to mitigate the problems of insufficient amount of labeled samples without collecting any additional sample with a target value. To this end, it is made up of two main steps: i) pairwise similarity modeling with scarce labeled data; and ii) triplet-based metric learning with abundant unlabeled data. The first step aims to model pairwise sample similarities by using a small number of labeled samples. This is achieved by estimating the target value differences of labeled samples with a Siamese neural network (SNN). The second step aims to learn a triplet-based metric space (in which similar samples are close to each other and dissimilar samples are far apart from each other) when the number of labeled samples is insufficient. This is achieved by employing the SNN of the first step for triplet-based deep metric learning that exploits not only labeled samples but also unlabeled samples. For the end-to-end training of DML-S2R, we investigate an alternate learning strategy for the two steps. Due to this strategy, the encoded information in each step becomes a guidance for learning phase of the other step. The experimental results confirm the success of DML-S2R compared to the state-of-the-art semi-supervised regression methods. The code of the proposed method is publicly available at https://git.tu-berlin.de/rsim/DML-S2R.